
Delayed instantiation bulk

operations for management

of distributed, object-based

storage systems
Andrew J. Klosterman

August 2009

CMU–PDL–09–108

Dept. of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Thesis committee

Prof. Greg Ganger, Chair (Carnegie Mellon University)

Mr. Craig Harmer (Symantec)

Dr. Sami Iren (Seagate)

Prof. Dave O’Hallaron (Carnegie Mellon University)

© 2009 Andrew J. Klosterman

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Delayed instantiation bulk operations for management of distributed,
object-based storage systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Parallel Data
Laboratory,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

255

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

The basic distributed, object-based storage system model lacks features for storage man-

agement. This work presents and analyzes a strategy for using existing facilities to im-

plement atomic operations on sets of objects. These bulk operations form the basis for

managing snapshots (read-only copies) and forks (read-write copies) of portions of the

storage system. Specifically, we propose to leverage the access control capabilities, and

annotations at the metadata server, to allow for selective clone and delete operations on

sets of objects.

In order to act upon a set of objects, a bulk operation follows these steps. First, the

metadata server accepts the operation, contacts the storage nodes to revoke outstanding

capabilities on the set of objects, and retains a record of the operation and the affected set of

objects. At this point, clients can make no changes to existing objects since any capabilities

they hold will be rejected by storage nodes. Second, when clients subsequently contact the

metadata server to access affected objects (e.g., acquire fresh capabilities), any records of

bulk operations are consulted. Finding that a client is accessing an affected object, the

metadata server will take the necessary steps to enact the uninstantiated operation before

responding to the client request. This eventual enforcement of operation semantics ensures

compliance with the operation’s intent but delays the corresponding work until the next

client access. With appropriate background instantiation, the work of instantiating bulk

operations can be hidden from clients.

In this dissertation, we present algorithms suitable for performing bulk operations over

distributed objects using m−o f −n encodings. The core logic is concentrated at the meta-

data server, with minimal support at clients and storage nodes. We quantify the overheads

i

ABSTRACT ii

associated with the implementation and describe schemes for mitigating them. We demon-

strate the use of bulk operations to create snapshots in an NFS server running atop dis-

tributed, object-based storage.

Acknowledgements

I thank the members and companies of the PDL Consortium throughout my doctoral career

(APC, Cisco, EMC, Engenio, Equallogic, Google, HGST, Hewlett-Packard, Hitachi, IBM,

Intel, LSI, Microsoft, NetApp, Oracle, Panasas, Seagate, Sun, Symantec and Veritas) for

their interest, insights, feedback, and support. Experiments were enabled by hardware

donations from APC, IBM, Intel, NetApp, and Seagate. This material is based on research

sponsored in part by the National Science Foundation, via grant #CNS-0326453, by the

Air Force Research Laboratory, under agreement number F49620–01–1–0433, and by the

Army Research Office, under agreement number DAAD19–02–1–0389.

iii

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Distributed, object-based storage . 2

1.2 Storage management and operations upon object sets 3

1.3 Thesis statement . 4

1.4 Bulk operations for storage management 4

1.5 Roadmap . 6

2 Background and related work 7

2.1 Distributed, object-based storage . 7

2.2 Broader references . 8

2.3 Cloning, snapshots and storage management 10

2.4 System components . 11

2.4.1 Objects . 11

2.4.2 Capabilities . 13

2.4.3 Data distribution . 14

2.4.4 Client . 16

2.4.5 Storage node . 17

2.4.6 Metadata server . 19

iv

CONTENTS v

3 Delayed instantiation bulk operations 21

3.1 Placement of responsibility . 21

3.1.1 Bulk operations at the storage nodes 22

3.1.2 Bulk operations at the client . 24

3.1.3 Bulk operations at the metadata server 24

3.2 Grouping objects . 25

3.3 BulkClone . 26

3.4 BulkDelete . 28

3.5 Delayed instantiation . 29

3.6 Bulk operation tracking . 31

3.7 Completion and success criteria . 32

3.8 Mitigating costs . 34

4 Implementation 35

4.1 Client . 35

4.2 Storage node . 36

4.3 Metadata server . 37

4.3.1 Front-end . 37

4.3.2 Back-end . 38

4.3.3 Helper . 40

4.4 Background instantiation . 40

4.5 NFS server . 42

4.6 Protocol . 45

4.6.1 Create . 46

4.6.2 Lookup . 47

4.6.3 Enumerate . 47

4.6.4 Delete . 51

4.6.5 Write . 52

4.6.6 Read . 54

4.6.7 BulkDelete . 55

4.6.8 BulkClone . 56

CONTENTS vi

5 Data structures and algorithms 57

5.1 Data structures . 57

5.1.1 Sequencer . 57

5.1.2 Object table . 58

5.1.3 BulkDelete table . 58

5.1.4 BulkClone table . 59

5.1.5 Object metadata tables . 59

5.2 Implications of bulk operations . 59

5.2.1 BulkClone . 60

5.2.2 BulkDelete . 62

5.3 Core algorithms . 64

5.3.1 GetMDOID . 64

5.3.2 InstantiatePassThroughLimits . 66

5.3.3 InstantiateHole . 68

5.3.4 Divorce . 71

5.4 Core operations . 72

5.4.1 Enumerate . 73

5.4.2 Create . 74

5.4.3 Lookup . 74

5.5 Correctness . 75

5.5.1 Initial bulk operation processing 75

5.5.2 Bulk operation instantiation . 77

6 Evaluation 80

6.1 Experimental setup . 81

6.1.1 Data collection and instrumentation 81

6.1.2 Workload scripting . 82

6.2 Baseline behavior . 84

6.2.1 Database access experiment . 84

6.2.2 Capability experiments . 85

6.2.3 Create . 87

CONTENTS vii

6.2.4 Write . 89

6.2.5 Read . 98

6.3 BulkDelete . 102

6.4 BulkClone . 106

6.4.1 Comparing chains-of-clones and prolific clones 106

6.4.2 Access after BulkClone . 106

6.5 Background instantiation . 109

6.5.1 Non-competitive background instantiation 111

6.5.2 Background instantiation with paced foreground workload 112

6.5.3 Random bulk operation background instantiation 117

6.5.4 FIFO bulk operation background instantiation 119

6.5.5 LIFO bulk operation background instantiation 124

6.5.6 Widest span of objects bulk operation background instantiation . . . 128

6.5.7 Thinnest span of objects bulk operation background instantiation . . 131

6.6 NFS server . 135

6.6.1 Baseline behavior . 135

6.6.2 PostMark . 137

6.7 Summary . 140

7 Conclusions and future work 142

Bibliography 148

A Experimental results 156

A.1 Baseline behavior results . 157

A.1.1 Database access experiment results 157

A.1.2 Capability experiment results . 158

A.1.3 Create experiment results . 160

A.1.4 Write experiment results . 164

A.1.5 Read experiment results . 179

A.2 BulkDelete experiment results . 187

CONTENTS viii

A.3 BulkClone experiment results . 189

A.4 Background instantiation experiment results 193

A.5 NFS server baseline results . 221

A.6 PostMark experimental results . 229

List of Tables

6.1 Write() operation differences with bulk operations 93

6.2 Re-Read() operation differences with bulk operations 99

6.3 Paced Create after BulkDelete with background instantiation 113

6.4 Paced Read after BulkClone with background instantiation 116

6.5 NFS File Create/Clone/Delete benchmark summary 136

6.6 Summary of PostMark results . 139

A.1 Ping metadata server back-end database 157

A.2 Acquiring storage node addressing information 158

A.3 Capability revocation . 159

A.4 Create(), sequential, no bulk operation code, no background instantiation . . 160

A.5 Create(), random, no bulk operation code, no background instantiation . . . 161

A.6 Create(), sequential, bulk operation code, no background instantiation . . . 162

A.7 Create(), random, bulk operation code, no background instantiation 163

A.8 Lookup(), sequential, no bulk operation code, no background instantiation . 164

A.9 ApproveWrite(), sequential, no bulk operation code, no background instan-

tiation . 165

A.10 SSIO Write(), sequential, no bulk operation code, no background instanti-

ation . 166

A.11 Finish Write(), sequential, no bulk operation code, no background instan-

tiation . 167

A.12 Write(), sequential, no bulk operation code, no background instantiation . . 168

ix

LIST OF TABLES x

A.13 Lookup(), sequential, active bulk operation code, no background instantiation169

A.14 ApproveWrite(), sequential, bulk operation code, no background instantiation170

A.15 SSIO Write(), sequential, active bulk operation code, no background in-

stantiation . 171

A.16 Finish Write(), sequential, bulk operation code, no background instantiation 172

A.17 Write(), sequential, bulk operation code, no background instantiation 173

A.18 Re-Write(), sequential, no bulk operation code, no background instantiation 174

A.19 Re-Write(), revoked caps, sequential, no bulk ops, no background instanti-

ation . 175

A.20 Cache-hit re-Lookup(), seq, no bulk ops, no background instantiation 176

A.21 Re-Lookup() to MDS, seq, no bulk ops, no background instantiation 177

A.22 SSIO Write() after revoke, seq, no bulk ops, no background instantiation . . 178

A.23 Read(), sequential, no bulk operation code, no background instantiation . . 179

A.24 Read(), sequential, no bulk operation code, no background instantiation,

invalid caps . 180

A.25 Lookup(), fast, bad caps, sequential, no bulk operation code, no back-

ground instantiation . 181

A.26 SSIO Read(), fast, bad caps, sequential, no bulk operation code, no back-

ground instantiation . 182

A.27 Lookup(), slow, bad caps, sequential, no bulk operation code, no back-

ground instantiation . 183

A.28 SSIO Read(), slow, bad caps, sequential, no bulk operation code, no back-

ground instantiation . 184

A.29 Read(), sequential, bulk operation code, no background instantiation, in-

valid caps . 185

A.30 Lookup(), slow, bad caps, sequential, with bulk operation code, no back-

ground instantiation . 186

A.31 BulkDelete of single objects, sequential, no background instantiation 187

A.32 Create after BulkDelete of single objects, sequential, no background in-

stantiation . 188

LIST OF TABLES xi

A.33 Repeated BulkClone of 1000 objects, prolific 189

A.34 Repeated BulkClone of 1000 objects, chain-of-clones 190

A.35 Read of BulkClone source objects . 191

A.36 Read of BulkClone destination objects . 192

A.37 Create after BulkDelete and completed background instantiation 193

A.38 Read after BulkClone and completed background instantiation 194

A.39 Create after BulkDelete 1:1 with Sleep 195

A.40 Create after BulkDelete 1:3 with Sleep 196

A.41 Create after BulkDelete 1:7 with Sleep 197

A.42 Read after BulkClone 1:1 with Sleep . 198

A.43 Read after BulkClone 1:3 with Sleep . 199

A.44 Read after BulkClone 1:7 with Sleep . 200

A.45 Random Read after BulkClone with Random background instantiation . . . 201

A.46 Sequential Read after BulkClone with Random background instantiation . . 202

A.47 Random Create after BulkDelete with Random background instantiation . . 203

A.48 Sequential Create after BulkDelete with Random background instantiation . 204

A.49 Random Read after BulkClone with FIFO background instantiation 205

A.50 Sequential Read after BulkClone with FIFO background instantiation . . . 206

A.51 Random Create after BulkDelete with background instantiation via FIFO

processing . 207

A.52 Sequential Create after BulkDelete with background instantiation via FIFO

processing . 208

A.53 Random Read after BulkClone with LIFO background instantiation 209

A.54 Sequential Read after BulkClone with LIFO background instantiation . . . 210

A.55 Random Create after BulkDelete with background instantiation via LIFO

processing . 211

A.56 Sequential Create after BulkDelete with background instantiation via LIFO

processing . 212

A.57 Random Read after BulkClone with background instantiation of widest range213

LIST OF TABLES xii

A.58 Sequential Read after BulkClone with background instantiation of widest

range . 214

A.59 Random Create after BulkDelete with background instantiation via widest

range processing . 215

A.60 Sequential Create after BulkDelete with background instantiation via widest

range processing . 216

A.61 Random Read after BulkClone with thinnest range background instantiation 217

A.62 Sequential Read after BulkClone with thinnest range background instanti-

ation . 218

A.63 Random Create after BulkDelete with background instantiation via thinnest

range processing . 219

A.64 Sequential Create after BulkDelete with background instantiation via thinnest

range processing . 220

A.65 NFS File Remove . 222

A.66 NFS File clone via copy . 223

A.67 NFS File Remove after clone via copy . 224

A.68 NFS prolific BulkClone . 225

A.69 NFS File Remove after prolific BulkClone 226

A.70 NFS chain-of-clones BulkClone . 227

A.71 NFS File Remove after chain-of-clones BulkClone 228

A.72 PostMark with no bulk operations . 229

A.73 PostMark with Clone via Copy . 230

A.74 PostMark with prolific clones . 231

A.75 PostMark with chains-of-clones . 232

A.76 PostMark with prolific clones and random background instantiation 233

A.77 PostMark with prolific clones and LIFO background instantiation 234

A.78 PostMark with prolific clones and thinnest range background instantiation . 235

A.79 PostMark with chains-of-clones and random background instantiation . . . 236

A.80 PostMark with chains-of-clones and LIFO background instantiation 237

LIST OF TABLES xiii

A.81 PostMark with chains-of-clones and thinnest range background instantia-

tion . 238

List of Figures

2.1 System model . 12

2.2 Capability acquisition and use . 14

2.3 Multiple data distributions for a single object 15

3.1 Two manners of using the clone operation 27

3.2 Bulk operation process . 30

4.1 NFS server as storage system client . 43

4.2 Directory contents after cloning . 45

4.3 Create and Re-Create with BulkDelete . 48

4.4 Lookup with BulkClone . 49

4.5 Protocol for Enumerate . 50

4.6 Protocol for Delete . 51

4.7 Write protocol with allocation . 52

4.8 Write triggering instantiation of a clone 53

4.9 Read triggering instantiation of a clone . 54

4.10 BulkDelete . 55

4.11 BulkClone . 56

5.1 Prolific clones . 60

5.2 A chain-of-clones . 61

5.3 Pass-through clone example . 67

5.4 Use case for InstantiateHole function . 69

xiv

LIST OF FIGURES xv

5.5 Initial bulk operation processing . 76

5.6 Instantiation of a bulk operation . 77

6.1 Create operation timing comparison . 88

6.2 Write protocol with allocation and extra Lookup 91

6.3 Write timing comparison . 96

6.4 Re-Write timing comparison . 97

6.5 Read timing comparison with invalid capabilities 100

6.6 Re-Read timing comparison . 101

6.7 BulkDelete and re-Create of pre-existing objects 102

6.8 Components of Create at the Metadata Server 105

6.9 Components of the Instantiate Hole subroutine 105

6.10 Read of source objects after BulkClone performing on-demand instantiation 108

6.11 Read of destination objects after BulkClone performing on-demand instan-

tiation . 108

6.12 Experiment description for create, write, clone, and read of objects. 110

6.13 Experiment description for create, write, delete, and read of objects. 111

6.14 Paced Create after BulkDelete. 114

6.15 Paced Read after BulkClone. 115

6.16 Random Read after BulkClone with Random background instantiation . . . 118

6.17 Sequential Read after BulkClone with Random background instantiation . . 118

6.18 Random Create after BulkDelete with Random background instantiation . . 120

6.19 Sequential Create after BulkDelete with Random background instantiation . 120

6.20 Random Read after BulkClone with FIFO background instantiation 121

6.21 Sequential Read after BulkClone with FIFO background instantiation . . . 121

6.22 Random Create after BulkDelete with FIFO background instantiation . . . 123

6.23 Sequential Create after BulkDelete with FIFO background instantiation . . 123

6.24 Random Read after BulkClone with LIFO background instantiation 125

6.25 Sequential Read after BulkClone with LIFO background instantiation . . . 125

6.26 Random Create after BulkDelete with LIFO background instantiation . . . 127

6.27 Sequential Create after BulkDelete with LIFO background instantiation . . 127

LIST OF FIGURES xvi

6.28 Random Read after BulkClone with background instantiation of widest range129

6.29 Sequential Read after BulkClone with background instantiation of widest

range . 129

6.30 Random Create after BulkDelete with background instantiation of widest

range . 130

6.31 Sequential Create after BulkDelete with background instantiation of widest

range . 130

6.32 Random Read after BulkClone with thinnest range background instantiation 132

6.33 Sequential Read after BulkClone with thinnest range background instanti-

ation . 132

6.34 Random Create after BulkDelete with background instantiation of thinnest

range . 134

6.35 Sequential Create after BulkDelete with background instantiation of thinnest

range . 134

6.36 PostMark configuration for NFS experiments. 138

Chapter 1

Introduction

Distributed, object-based storage has come into its own through the past decade. Pioneered

as the NASD project in the mid- to late-1990’s [29], various incarnations of this storage

model have been discussed in academic [1, 30, 78, 80] and industrial [6, 8, 19, 25, 28, 43,

56, 57, 66] circles. Characteristics of these systems include (1) variably sized objects as

containers for data storage, (2) a large, flat namespace for object naming, (3) capabilities

for access control, (4) direct access by clients to storage nodes for scalable performance,

and (5) a metadata server for control of object metadata and the namespace.

New challenges arise for storage management in this architecture. Management opera-

tions in traditional storage systems have a centralized location through which all accesses

pass. For instance, a network attached file server serves as a centralized arbiter of ac-

cess and, during client accesses, can ensure that management operations across all files

are enforced. In a distributed, object-based storage system, en masse operations on ob-

jects require coordination among the three prime members of the distributed, object-based

storage system: clients, storage nodes, and the metadata server. In multi-tenant situations,

where many customers simultaneously operate upon a shared storage system, the isolation

of management operations for performance and access-control reasons becomes a storage

management concern.

1

CHAPTER 1. INTRODUCTION 2

1.1 Distributed, object-based storage

This dissertation specifically addresses issues related to distributed, object-based storage

systems. These systems are distributed insofar as their components are interconnected by

a communication network and need not be physically close together (although proximity

is likely). Common distributed systems problems are faced: communication, agreement,

authentication, authorization, fault-tolerance, etc. Objects are the containers for storage in

these systems. An object has an integer name from a large namespace (e.g., 128 bits) and

a byte-addressable data component. Such systems consist of three primary participants:

clients, metadata server, and storage nodes. Clients drive data access by creating, deleting,

reading and writing objects. The metadata server authorizes client actions by responding

to access requests with metadata and capabilities (software tokens denoting access permis-

sion) and controlling the existence of objects. Storage nodes respond to client requests

submitted with valid capabilities.

Persistent storage of the information in an object is a responsibility split between the

separate, but intricately interrelated, components of the distributed, object-based storage

system. As a first consideration, the simple existence of an object is controlled. This

is the proper job of a namespace server: recording which objects exist, or do not exist,

within the namespace. For our purposes, we will combine the functioning of the namespace

server and metadata server, referring only to the metadata server throughout the rest of

this dissertation. As a second point, the metadata server is responsible for tracking of

information about how the data of an object is stored. The metadata consists of such items

as the length of the object’s data component and the names of the storage nodes upon which

portions of that data are stored. The third aspect of persistent storage concerns the storage

nodes. They are the ultimate repository of the information in an object’s data component

and are responsible for persistent storage (i.e., placing the data on a storage device and

retrieving it when requested). The clients, of course, populate objects with data based on

metadata stored at the metadata server and write that data to storage nodes. Coordinating

actions among all of these components complicates efforts to perform an operation upon a

set of objects.

CHAPTER 1. INTRODUCTION 3

1.2 Storage management and operations upon object sets

Storage management involves the care and maintenance of storage systems to meet per-

formance, availability and reliability goals expected for accessing the stored data. Tasks

for meeting these goals include, but are not limited to, selection of data storage encodings

(e.g., RAID levels), migration of data between storage devices, reclamation of space, man-

agement of access, control of quotas, and replication for enhancing read-only performance,

disaster tolerance, and archive. In common network-attached file system servers, storage

management tasks are concentrated at that file server. The less-centralized nature of dis-

tributed, object-based storage systems complicates matters. Without centralized control or

complex distributed algorithms, such systems could struggle to perform management tasks.

Applying management tasks to large portions of a storage system is common. For

example, an entire file system might be copied to an off-site location for disaster recovery

purposes. Or, a block-storage volume might be destroyed to reclaim or re-purpose storage

system capacity. A volume-based storage system, like AFS [40], could move a volume

between servers for load-balancing. For a distributed, object-based storage system, the set

of objects upon which to operate must be an argument to the calls initiating management

tasks.

This dissertation explores the approach of bringing centralized control of distributed,

object-based storage systems to the metadata server where management tasks can be per-

formed. We refer to the operations supporting storage management tasks as bulk operations

and target them against sets of objects. We desire the two key characteristics from the bulk

operations. First, they should quickly respond to requests for execution. Second, they

should operate atomically upon the affected objects. This all-or-nothing semantic simpli-

fies error handling should there be a problem with execution.

CHAPTER 1. INTRODUCTION 4

1.3 Thesis statement

This dissertation shows that . . .

A distributed, object-based storage system can provide atomic bulk op-

erations on compactly described and externally defined object sets using

delayed instantiation.

This is shown by the following sequence of steps:

1. Describing compact object set description approaches and how they can be used for

bulk operations in a distributed, object-based storage system.

2. Demonstrating delayed instantiation bulk operations in a prototype system.

3. Showing that background instantiation can be used to reduce the impact of delayed

instantiation bulk operations on subsequent accesses.

1.4 Bulk operations for storage management

The aforementioned bulk operations assist with storage management tasks along several

dimensions in distributed, object-based storage systems. First, they provide an interface

through which groups of objects can be manipulated. Second, they encapsulate the com-

plexity of the tasks in a way similar to a programming library interface: an easy-to-use

interface and simple semantics hide complex behind-the-scenes machinations. Third, by

grouping related objects together, an administrator can more easily manage portions of

a shared storage infrastructure (e.g., shared between distinct administrative or functional

entities in a business). Fourth, the atomic action of such operations simplifies understand-

ing of their effects, removes chances of side-effects, and allows for their confident use by

storage system administrators.

Given the complexity of storage systems, it behooves the architect to provide simple

ways for users to perform their tasks. The availability of bulk operations as a tool for

CHAPTER 1. INTRODUCTION 5

an administrator fills a sure need for storage management tasks. Without the sort of pre-

packaged bulk operations we examine, an administrator might forego the purchase of a

storage system or be forced to find another source for their implementation. The source

may come in the form of a commercially available software toolkit or home-made scripts –

neither of which are likely to be as efficient as if such capabilities were provided within the

storage system. With bulk operations included in a storage system at the point of initial de-

sign, efficient implementation and best-practices for use can be developed simultaneously

and offered to users.

Our implementation of bulk operations exploits a disconnect between the semantics of

execution and the instantiation of the intended effects of the operation. At execution time,

the storage system promises to honor an operation. However, it is not necessarily required

to immediately act on implementing the effects of the operation. The storage system only

needs to enforce that the intended effects of the operation are observable when clients in-

vestigate. Therefore, the work of actually instantiating the operation upon an object can be

delayed until such time as a client would observe the effects of the operation. This strategy

of delayed instantiation enforces operation semantics from a client-observable viewpoint

rather than an immediate execution strategy, which would perform all necessary work be-

fore returning a “success” code to the caller.

Let us take as an example the interaction of a bulk operation that deletes a group of

objects and an object create operation that fails if the target object to be created already

exists. Consider this situation: an object exists, is written and read, and then falls within

the group affected by a newly executed bulk delete operation. At this point, the storage

system may delay the instantiation of the delete operation upon the object; it can wait to

free the backing store of the object’s data component. It must only prevent access to the

existing data and disallow any listings of the object’s existence in the storage system’s

namespace. When a client wishes to create an object with the same name as the deleted

object, the storage system must free the backing store of the previous incarnation of the

object before allowing the new create operation to succeed. Thus, the semantics of the bulk

delete operation have been preserved and the instantiation of the operation delayed until a

client would come in conflict with the semantics.

CHAPTER 1. INTRODUCTION 6

1.5 Roadmap

The remainder of this dissertation is organized as follows. Chapter 2 describes related

work and the components of a distributed, object-based storage system. Chapter 3 presents

issues related to the design and implementation of bulk operations and describes the two

upon which we concentrate. Chapter 4 details the inner workings of our prototype client,

storage node, and metadata server that support bulk operations, describes the background

instantiation algorithms used to mitigate the costs of bulk operations, describes how an

NFS server can work with bulk operations, and presents the operations exposed to clients.

Chapter 5 describes the data structures and algorithms that support our implementation of

delayed instantiation bulk operations. Chapter 6 presents baseline behavior of the system,

calculates costs associated with the particular setup, evaluates the effects of bulk operations

and background instantiation, and shows how they are used by our NFS server. Chapter 7

summarizes our findings and describes possible future work. Appendix A includes tables

with summary statistics of operation execution times for experimental runs, benchmark

configuration, and raw data from experiments involving our NFS server.

Chapter 2

Background and related work

The bulk operations presented here provide support for the creation of selective snapshots

and forks within distributed, object-based storage systems. To provide background for

understanding of the system, this chapter describes object-based storage and storage man-

agement using snapshots and forks. The chapter concludes with descriptions of parts of the

particular storage system used for the realization of bulk operations.

First, we relate the system and thesis we are investigating to related work. Then, we

describe the system components.

2.1 Distributed, object-based storage

Distributed, object-based storage has evolved since the mid-1990’s to address scaling, per-

formance, and management issues with traditional block and file system storage system

architectures. Promulgated as the NASD system [29, 31], multiple storage nodes were

connected to computers using the storage via a communication network. With the net-

work as a scalable interconnect, storage nodes could be added to scale the capacity and the

bandwidth to the aggregate limits of the network and storage nodes [32].

The object model, as a container for data storage, assists this vision by acting as an in-

termediary data structure between the primitive interface of raw blocks and sophistication

of file systems. Block storage is exemplified by the SCSI interface [70], where all storage

7

CHAPTER 2. BACKGROUND AND RELATED WORK 8

locations on a device are blocks (consisting of a number of bytes) addressed by a block

number. Access to a block of data reads or writes it in its entirety. File systems provide an

abstraction of a file that can be accessed at byte granularity and navigated through directo-

ries (containers for files and other directories). Object-based storage fills the gap, pointed

out in 1980 [24], in the storage system hierarchy between files and blocks. This is further

elaborated upon in the IEEE Mass Storage System reference model [21]. Many examples

of file systems have been built to use object-based storage in academia [1, 30, 78, 80] and

in industry [6, 8, 19, 25, 28, 56, 57, 65, 66]. The standardization of an interface to object-

based storage has assisted efforts at expanding the applicability of the technology [43].

Object-based storage systems share some common characteristics. Unlike traditional

hierarchical file systems ([23]), the namespace is flat in object-based storage and consists

of a number taken from some set of integers. Allowance is made for direct client access

to the storage, taking away the bottleneck of traditional file servers [28–30, 34, 35, 64]. A

metadata server takes the place of that traditional file server to control access to storage.

To allow the metadata server to control access to the storage without being queried for

every access, most systems use capabilities, a type of authorization token popularized in

the 1970’s [5, 10].

The object-based storage discussed in this dissertation is different from object-oriented

programming and persistent object systems as described in these sources [4, 7, 9, 22, 41,

51, 59, 74]. Garbage collection and inheritance of properties between objects, for example,

are design goals of object-oriented systems that we are not concerned with.

2.2 Broader references

Various academic or industrial research projects have supported snapshots and forks in

various forms; we only present a few of these here although the features are widespread.

The Venti archival storage system never overwrites data, allowing for snapshot file systems

to be easily built on top of it [61]. Snapshots of block-based distributed storage were

supported in Petal [50], which was used to build the Frangipani [76] file system. The

“Mime” block-based storage system from Hewlett Packard also supported snapshots [16].

CHAPTER 2. BACKGROUND AND RELATED WORK 9

The Federated Array of Bricks (FAB [27]) prototype at Hewlett Packard implements a

distributed agreement protocol to quickly make snapshots and forks of its distributed block-

based storage [3].

Snapshot support in databases evolved from the use of logging for transaction sup-

port [2], as the transactions could be rolled-back to any point in time to examine the con-

tents of the database [55, 72]. Databases also inspired the atomic transactional nature of

our bulk operations [36].

The atomicity of database transactions transitioned into the realm of data storage sys-

tems. Various systems from the 1980s supported atomic actions on groups of files [12, 33,

52, 53, 62, 63, 77]. A summary of many such atomic update storage systems is presented

in [75]. Later, atomic updates were applied to logical disks underlying file systems [37].

The roots of the experimental clustered, object-based storage system presented in this

dissertation can be found in a distributed block-based storage system. That system, PA-

SIS [1, 81], was built atop versioning storage nodes and presented a protocol that ensured

consistent access to clients in the face of access concurrency.

We have also borrowed the concept of access capabilities that were applied to storage

systems in the 1970’s [5, 10] for controlling access and metadata freshness. They have

become fairly standard features of systems where clients can directly access object-based

storage [28–30, 34, 35, 64].

Our use of external assignment of object identifiers from a flat namespace fits a possibil-

ity for naming outlined in various resource-naming taxonomies [47, 68, 82]. The practice of

encoding information in object identifiers, in our case to indicate directory and snapshot/-

fork membership, has been used in storage systems for some time to indicate information

about the storage locations of data [20, 59]. It is common practice for NFS [14, 58, 73]

servers to embed inode numbers in the filehandles (used to uniquely identify files) ex-

changed with clients; in fact, we plan to use object identifiers as primary components of

filehandles.

Similar to the distributed systems problem of providing serialized and consistent ac-

cess, creating snapshots (distributed agreement of state) is also a general problem [15, 71].

By centralizing the bulk operation instantiation responsibility in the object manager, this

CHAPTER 2. BACKGROUND AND RELATED WORK 10

storage system avoids distributed system problems associated with distributed consensus

algorithms [13, 38, 48, 49, 60, 69].

2.3 Cloning, snapshots and storage management

For object-based storage to compete in the marketplace, it must approximate the features

of established products. One feature that is trickling-down from high-end to mid-range

storage systems is the ability to make a point-in-time copy of a storage system [67]. These

copies are variously called snapshots, forks and clones. For our purposes, a snapshot will

be a read-only copy, a fork will be a read-write copy, and a clone can refer to either.

These storage system clones ease various management tasks associated with business-

critical storage systems. Copies of data are commonly used for disaster prevention/recov-

ery, archive, error recovery and system testing. With a clone of storage, a consistent view

can be statically maintained for the duration of a copy operation. A clone operation that

executes quickly, while storage is online, and atomically in the face of concurrent access,

is of great value for these purposes. Early implementation of clone operations occurred in

the Andrew File System [40]. Notable commercial success with storage system snapshots

was achieved by NetApp, nee Network Appliance [39]. Making system snapshots with

write-once storage has also been shown to be feasible [61].

A standard for OSD-2 has propagated through the standards committees of the SNIA

Object-Based Storage Devices working group and ANSI T-10 [42, 79]. Standardized com-

mands allow for the creation of “snapshots” and “clones” of partition objects. These objects

are linked together with special entries in their “attribute pages” to form chains [11, 43].

When creating these new partitions, options exist for them to be created as copy-on-write

versions of their source or as complete byte-by-byte copies. The commands can be long-

running with completion noted as a percentage observable in an attribute of the partition.

That work differs from this dissertation’s approach in four ways. First, we are concentrat-

ing on coordinating a “snapshot” or “clone” operation across multiple storage nodes and

using heterogeneous data distributions, while their specification applies to a single storage

device. Second, we provide for atomicity of a rapidly executed operation, while they spec-

CHAPTER 2. BACKGROUND AND RELATED WORK 11

ify a long-running operation that may partially complete. Third, we do not expose tracking

between source and destination object sets, while they have attribute pages to indicate that

history. Fourth, we allow for operations to occur on any objects in the storage system,

while they operate only upon “partition objects” which contain many objects.

2.4 System components

The storage system for which we are constructing bulk operations serves data stored in ob-

jects and accessed through cooperation between three primary components: clients, storage

nodes and a metadata server. These components are connected by a network and the algo-

rithms for successful operation are distributed across each of the components involved in

an operation.

Clients exchange metadata with the metadata server and directly access data on the

storage nodes. The metadata server manages metadata and controls access by employing a

capability-based access control mechanism. Storage nodes execute client requests to read

or write data when presented with valid capabilities.

We next present information about the object model for the system architecture on

which we focus, and the data distributions by which the data for an object is stored.

What follows are component descriptions addressing the characteristics, responsibilities

and functioning of each component, along with example programming interfaces. These

descriptions are provided to set the stage for the introduction of bulk operations into a

distributed, object-based storage system built around these components.

2.4.1 Objects

An object is a named container for a byte-stream. An object has a name, or object identifier

(OID), selected from an object identifier namespace. The object identifier namespace, or

namespace, consists of unsigned integers of some power-of-two number of bits in size.

For this work, we assume the object identifiers of 128 bits. For this work, we assume

that the object names are selected by clients.The methods described for implementing bulk

operations later in the dissertation rely on this aspect of object naming.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Client Node

Storage Nodes

Data

M
et
ad
at
a

Network

Metadata Server

Figure 2.1: System model

A distributed, object-based storage system consists of a metadata server, clients, and stor-

age nodes. Clients exchange metadata with the metadata server before interacting directly

with storage nodes to access data.

The byte stream component of an object contains raw data that can be written and read.

Bytes are addressed starting first at the zero byte and proceeding to the end of the byte-

address space. An object’s byte stream can be addressed similarly to that of a file, from

bytes 0 through 264
− 1 (for a 64 bit address space). When accessing the byte stream, the

object identifier of interest is supplied along with the desired byte stream offset and an

indication of the number of bytes of information to be accessed. In this sense, the object

identifier serves as a sort of file handle or file descriptor, and addressing of the bytes of the

object proceeds just as is done with files.

The attributes of an object may be very limited. We assume that attributes consist of the

object identifier, the length of the byte stream, and a logical create time at the very least.

The object identifier and byte stream have been discussed in the preceding paragraphs. The

CHAPTER 2. BACKGROUND AND RELATED WORK 13

logical create time is maintained to establish a relative ordering for operations that impact

the evolution of the object identifier namespace. There is a single logical clock used in the

system to timestamp the creation of objects and the execution of bulk operations. Using

these timestamps for comparison is a key component of the bulk operation algorithms used

to disambiguate cases of object (non-)existence.

2.4.2 Capabilities

Our implementation of bulk operations relies on the use of capabilities to control access to

objects. A capability is a token (represented by a sequence of bytes) presented along with

a request to prove that authorization has been given to perform an action. In the physical

world, a movie ticket can be considered a capability: you present the ticket to prove that

you have access to a particular theater to view a movie. In the distributed storage system

sense, a capability is a data structure authorizing access to an object.

For the purposes of this dissertation, there are two important aspect of capabilities. The

first is their ability to authorize clients’ access to data on the storage nodes. The second is

the ability of the metadata server to revoke that access by contacting the storage nodes.

In distributed, object-based storage, capabilities are completely under the control of

the metadata server as shown in Figure 2.2 on page 14. The metadata server is the only

entity that may issue and revoke capabilities. Clients request capabilities when they acquire

metadata to access objects at the storage nodes. The storage nodes check that capabilities

are valid when they receive them along with a read or write request. When necessary,

the metadata server contacts storage nodes and informs them that some capabilities should

no longer be honored. If a client attempts to use an invalid capability, it is informed that

its request cannot be completed because the capability is invalid. The logic of the client

library, when receiving such a message, contacts the metadata server for a fresh capability

and metadata before retrying an operation.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

client metadata server storage node

GetCap(object)

success, cap

Access(cap, object, args)

success

Revoke(object)

success

Access(cap, object, args)

failure, invalid cap

GetCap(object)

success, cap

Access(cap, object, args)

success

Figure 2.2: Capability acquisition and use

This protocol exchange shows a client acquiring and using capabilities. The metadata

server then revokes capabilities. When the client uses invalid capabilities, it re-acquires

them and continues with access.

2.4.3 Data distribution

An extent is a range of bytes within the byte stream of an object. Each extent can have its

own data distribution which specifies a block size, a block encoding algorithm, a set of

threshold encoding parameters, and an ordered list of storage node addresses. The infor-

mation of a data distribution is used by the client library to read and write data. It is stored

in the metadata server, where it can be accessed by clients. An example data distribution

for an object is shown in Figure 2.3 on page 15

The block size of a data distribution specifies the number of bytes over which the block

encoding algorithm will be applied. The block size is variable so that it might match the

common access sizes of client applications.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

A

B

C

���������
���������
���������

���������
���������
���������

��������
��������
��������

��������
��������
��������

���������
���������
���������

���������
���������
���������
���������
���������
���������
��������� ��������

��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

Byte Stream

Object

Data Distribution X Data Distribution Y
Block size = 16 kB

Encoding = 1−of−2

Block size = 32 kB

Encoding = 2−of−3

Storage Nodes A, C Storage Nodes A, D, B

D

Storage

Nodes

Replica

Replica
Parity

Stripe

Stripe

Figure 2.3: Multiple data distributions for a single object

A pictorial example of the data stream of a single object whose data stream has two ex-

tents and hence two different data distributions. Of the six total blocks comprising the data

stream, four have one distribution and two have another distribution. The resulting frag-

ments for one block of each distribution are shown: distribution X fragments are the same

size as the block because each holds a full copy of the data, distribution Y fragments are

each one-half the size of the block because of the 2-of-3 encoding. The resulting fragments

are spread across the storage nodes of the distributed, object-base storage system.

The block encoding algorithm is an enumerated type that acts as an index into a set of

functions for encoding and decoding the data. It is parameterized by the threshold encoding

parameters. Different algorithms (e.g., replication, striping and parity, and secret sharing)

are available to match performance and confidentiality requirements.

The threshold encoding parameters describe the number of equal sized fragments (the

n parameter) into which the block is broken and, in the simplest case, the number of those

n fragments necessary to reconstruct the data during a Read operation (the m parameter).

CHAPTER 2. BACKGROUND AND RELATED WORK 16

These m-of-n encodings, where m is less-than or equal-to n, break a block into n fragments

of which m must be fetched during a successful Read operation. For any block of data,

there are n fragments of size block size
m

and so n∗block size
m

bytes are stored, incurring a storage

blow-up of n
m

. As familiar examples of these m− o f − n parameters, consider mirroring,

striping and parity schemes. Mirroring is a 1-of-n configuration that has a blow-up of n
1

and where any one fragment constitutes a complete copy of the data for a block. Striping

is a n-of-n configuration, where the data is broken up and spread evenly across storage

has a blow-up of n
n

= 1. Parity schemes are more rightfully termed m-of-n schemes and

provide redundant information to the tune of the difference between m and n, usually with

m fragments of striped data and (n−m) fragments of parity data.

The list of storage nodes provides the information necessary for a client to contact the

correct storage nodes when reading or writing data. Some block encoding algorithms, like

parity schemes that prefer to access the striped fragments and save on parity calculations,

use this ordered information to opportunistically take short-cuts through their encode/de-

code code paths.

2.4.4 Client

Clients are the driving force of the storage system; very little happens that is not directly

driven a client. There may be many clients, or few; they could reside on one physical

computer or on many. They might use the storage system directly (e.g., a database storing

tables and indices in objects) or indirectly on behalf of others (e.g., an NFS server storing

files and directories in objects). Clients are assumed to be heterogeneous and are connected

to the storage nodes and metadata server via a network.

Clients view the distributed object-based storage system as a set of named objects with

each object providing a byte-addressable data portion. They drive the evolution of the

object-identifier namespace by creating and deleting objects. When creating objects, the

client specifies the object identifier to be used. They can observe the state of the namespace

by enumerating its contents. The byte-stream component of objects is modified with write

commands and observed with read commands.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

Internally, a client translates calls to its own API into calls to the metadata server and

to storage nodes. Creating and deleting of objects are operations on the metadata server.

When reading or writing objects, metadata manipulation is done via communication with

the metadata server and data access, using that metadata, proceeds directly between the

client and the appropriate storage nodes. Metadata cached at the client contains a capability

that is sent along with requests to storage nodes. Provisions are made for clients to choose

the data distribution of the data portion of objects.

API

These are the functions that a client application can call to interact with the storage system.

Create(OID) If the object does not already exist in the object identifier namespace, add

it as an empty object of zero-length.

Delete(OID) If the object exists, remove it from the object identifier namespace and make

its data inaccessible.

Enumerate(start OID, end OID, num objects) Return a list of at most num objects

starting from start OID up to end OID.

Write(OID, offset, length, buffer) Write to the byte-stream component of object OID at

the given offset the contents of buffer up to the given length.

Read(OID, offset, length, buffer) Read the byte-stream component of object OID at the

given offset and for the given length; return the data in the provided buffer.

2.4.5 Storage node

Storage nodes are, primarily, passive elements in the storage system. They may be hetero-

geneous in capacity, throughput and responsiveness. A storage node may protect data by

storing redundant information, or it may not. A network connects storage nodes to the other

system components and to each other. They process data requests received from clients. A

CHAPTER 2. BACKGROUND AND RELATED WORK 18

storage node uses information received from the metadata server when making decisions

about allowing client access to proceed.

Storage nodes are responsible for storing data. They react to requests received from

clients to read or write data. A request to write an object for which a storage node does

not already hold data results in an implicit “create” of that object on the storage node.

Capabilities sent along with the requests serve as authorization for the operation. If the

storage node receives invalid capabilities along with a client request, the operation is not

performed and an error message is returned.

The metadata server controls access to data by exercising control over the validity of

capabilities and by removing objects from storage nodes. The metadata server may contact

storage nodes to inform them that some set of capabilities that may be held by clients are

no longer valid. These invalidation requests cause the storage node to update its capabil-

ity tracking information. Deleting objects from storage nodes is explicitly performed by

messages sent by the metadata server.

Internally, a storage node tracks three kinds of information. First, it knows the object

identifiers for which it holds data. When a valid write request arrives for an as-yet-unknown

object identifier, an implicit “create” of the object will occur. Second, for each data location

of the objects, the storage node associates some data. This data is set by write commands

and can be retrieved with read commands. Third, storage nodes track information about

which capabilities are valid and which are invalid. This information is consulted for each

read or write access; any use of invalid capabilities returns an error to the calling client.

API

This is the set of commands addressable to storage nodes. Clients use the SSIO Write()

and SSIO Read() commands. The MDS uses the Delete() and Revoke() commands.

SSIO Write(capability, OID, location, buffer) For the object with the given OID, store

the contents of buffer at the given location if the capability is valid. This is a low-level

command used by the client-visible Write command.

CHAPTER 2. BACKGROUND AND RELATED WORK 19

SSIO Read(capability, OID, location, buffer) For the object with the given OID, return

in the given buffer the data maintained for the given location if the capability is valid.

This is a low-level command used by the client-visible Read command.

Revoke(OIDs) For the objects with the named OIDs, ignore all capabilities granted pre-

viously.

Delete(OID) Make all data locations maintained for the given OID become inaccessible.

2.4.6 Metadata server

The metadata server is a centralized entity that manages the object-identifier namespace

and the metadata for each object. There may be many systems cooperating in a cluster to

act as a single logical metadata server, or there may be a single system. There is network

connectivity between the metadata server and all clients and all storage nodes.

The metadata server is responsible for managing the object-identifier namespace and

the metadata for each object. Information about the (non-)existence of objects is main-

tained. For each existing object, metadata is stored. Clients are forced to use common data

distributions when concurrently writing regions of objects through the use of an intention

logging system. An intent to write data to a new region of an object using a particular data

distribution is logged via the ApproveWrite operation. If successful, this returns a capa-

bility. If a client proposes an ApproveWrite with a data distribution that conflicts with an

already successful ApproveWrite, the already successful data distribution is returned and

the client may then re-try with the new information. After writing to storage nodes, clients

execute FinishWrite calls to indicate that data for a region of an object is now available.

The metadata server maintains three sets of information. First, there is an object

database that tracks the existence of objects, which is modified whenever objects are cre-

ated or deleted. Second, there is a metadata database to hold metadata information for those

existing objects that contain data. Third, there is a PendingWrite database holding the set

of approved metadata for writing to new regions of existing objects. Each ApproveWrite

operation can add metadata here, and FinishWrite operations move that metadata to the

metadata database. Delete operations result in capability revocation messages being sent to

CHAPTER 2. BACKGROUND AND RELATED WORK 20

storage nodes, but actual removal of data at storage nodes can wait until an object identifier

is re-used.

API

These are the commands to which the metadata server responds.

Create(OID) Add an object with the given object identifier to the namespace.

Delete(OID) Remove the object with the given object identifier from the namespace,

making any of its data inaccessible.

Enumerate(start OID, end OID, num objects) Return a list of at most num objects

starting from start OID up to end OID.

ApproveWrite(OID, data distribution) Log an intent to write data for the object with

the given object identifier with the given data distribution.

FinishWrite(OID, data distribution) Register completion of writing to the object with

the given object identifier for the specified data distribution.

Lookup(OID, offset, num bytes) Retrieve a capability and the data distribution infor-

mation necessary to read and write the object with the given object identifier.

Chapter 3

Delayed instantiation bulk operations

This chapter presents features of a delayed instantiation bulk operation design within a

distributed, object-based storage system. First, the we consider the options for placement

of responsibility for carrying out bulk operations within the system. Second, grouping

of objects into units suitable for bulk operations is discussed. Third, we present desired

characteristics of two bulk operations: BulkClone and BulkDelete. Fourth, the options for

instantiation of bulk operations are considered. Fifth, we offer two strategies for tracking

uninstantiated bulk operations. The chapter finishes with considerations for successful

completion of bulk operations and ways to mitigate the costs associated with them.

3.1 Placement of responsibility

As we consider the design of bulk operations within a distributed, object-based storage

system, we must decide where the responsibility for enforcing semantics will lie. There are

three places where responsibility might be assigned based on the need to act simultaneously

on many objects: at the client, at the storage nodes or at the metadata server. Each of these

locations has its merits, and shortcomings, which we present in the following sections.

There are many practical concerns to address while considering the placement of func-

tionality. Not all of these are addressed in the following discussion, but they serve as guides

for the decision making process.

21

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 22

System startup How is the mechanism bootstrapped?

System shutdown How does the system shutdown cleanly?

Recovery and repair If there is an error, how is it detected and corrected?

Performance What are the performance implications?

Administration How is the mechanism managed?

Data sharing What information is shared through the system and how is it shared?

Component join/leave What happens as components join and leave the system?

Externally initiated operation Can an external entity trigger the mechanism and to what

effect?

Comprehensibility of semantics Are the semantics of the mechanism easy to reason about?

Abstraction Is the level of abstraction appropriate?

3.1.1 Bulk operations at the storage nodes

Performing bulk operations at the storage nodes concentrates responsibility at the lowest

level of a distributed, object-based storage system. This is the approach being pursued

by the SNIA OSD working group through the ANSI T-10 committee [11]. As all data is

maintained by the storage nodes, they are closer to it than the metadata server or clients

when it comes time for a bulk operation. The one distinct advantage is that there is no need

for capability revocation from clients when a bulk operation is performed, and performing

copy-on-write is straightforward.

There are too many complexities to consider bulk operations at storage nodes as a vi-

able option in our situation. Issues of heterogeneity, permission, namespace management,

recovery and feature implementation must be overcome.

A concern with placing responsibility for bulk operations at storage nodes has to do

with object existence: since the metadata server tracks object existence, how can storage

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 23

nodes know what objects to clone? Besides that, each storage node can have a different

view of the contents of the storage system: its local view. Coordinating the set of objects

to be cloned (or deleted) across many storage nodes is the issue.

In large distributed systems, the set of active components can be changing from moment

to moment. Faulty components, decommissioning of old components and commissioning

of new components all change the set of participants at largely unpredictable times. If a

storage node misses a message to execute a bulk operation, how will the system handle that?

After taking a storage node out of service for repair, it must re-join the system and somehow

be populated with information it may have missed. Should logs of missed messages be

maintained? Should storage nodes be wiped and re-commissioned any time they re-join?

How will this re-commissioning affect the reliability and availability of stored data?

Our system model is designed around an assumption that storage nodes are heteroge-

neous in their characteristics, in their contents, and in their security. Some storage nodes

are expected to have greater processing power and/or capacity, for example. Executing

bulk operations at storage nodes, therefore, could lead to drastically different service times

observable by the caller. There could also be wide variation in service time given that some

storage nodes will hold more objects than others and so could take longer to process a bulk

operation. Also, if storage nodes had heterogeneous software for servicing requests, im-

plementation decisions for that software could lead to variation in service time. Varying

levels of security throughout a large system lend themselves to the use of m−o f −n data

encodings, such as information dispersal algorithms, to spread information across storage

nodes that may be (or may become) compromised.

The initial storage nodes taken as members for the distributed, object-based storage

system were very simple and performed well enough. To add the necessary code to solve

the issues presented in the preceding paragraphs would certainly destabilize their position

in the system. And, the interfaces would be very difficult to standardize — the OSD-2

standardization effort avoided issues of multi-OSD consistency. As such, it was decided

not to pursue the path of making storage nodes responsible for handling bulk operations.

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 24

3.1.2 Bulk operations at the client

Having the client library responsible for bulk operations presents challenges in that it

creates “silos” of objects. If a client library is tracking bulk operations (BulkClone and

BulkDelete) then only that one client knows about the (non-)existence of objects. This

complicates sharing of objects between clients as each client would be delegated control

over some portion of the object identifier namespace. Yet, such sharing is one of the reasons

for object-based storage to exist.

There are two advantages to this approach. First, there is no need for the capability re-

vocation of the metadata server approach. Clients would not have to re-acquire capabilities

after bulk operations. Second, only those clients that require bulk operations will have to

deal with them. Only they will need to execute code paths concerned with bulk operations.

Client managed bulk operations would be very portable to different storage systems.

When they are implemented in a library, there are no particular dependencies on the storage

system for assistance in carrying them out. In the absence of a Clone primitive at storage

nodes, a client library could make a copy of an object by reading from a source object and

writing to a new destination object.

However, the storage system could lose track of quota issues by delegating control to

clients. It would need a back-channel to query clients to know how many objects were

in-use and what capacity was being consumed.

Also, situations of client failure would require Enumerate() calls to figure out if objects

existed in the storage system as compared to what their data structures indicate. Any cor-

ruption of state on a client could destroy the tracking structures for bulk operations and

place the namespace in an unknown state. And, that approach would clearly not work with

untrusted clients.

3.1.3 Bulk operations at the metadata server

Bulk operations as the responsibility of the metadata server can avoid many of the com-

plications of the other two approaches, but comes with performance costs associated with

capability revocation and re-acquisition. Both the client library and storage node based ap-

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 25

proaches avoid these costs. However, the other characteristics of delayed instantiation bulk

operations managed at the metadata server prevail when considering feasibility in practice.

With control at the metadata server, there is a centralized location for managing bulk

operation information. This approach avoids having many clients or many storage nodes

trying to coordinate bulk operations amongst one another. The metadata server knows what

bulk operations have been executed and can handle their instantiation appropriately.

As a necessarily secure and trusted portion of the storage system, the metadata server

can be expected to faithfully carry out bulk operations. If bulk operations were managed at

untrusted clients, then the storage system may not be stable. Similarly, if a faulty storage

node were managing bulk operation information, it could corrupt an entire storage system.

The metadata server is already responsible for managing the object identifier namespace

through the Create and Delete operations. The addition of BulkClone and BulkDelete,

which also manipulate the namespace, is a logical progression. The metadata about objects

affected by bulk operations also places it in an ideal location for handling instantiation:

with information already on hand, it is easy to contact the necessary storage nodes to make

a clone or delete an object.

3.2 Grouping objects

For the bulk operations proposed in this dissertation, there must be a way to form groups

of objects that are specified as arguments. Groups can be formed in many ways. Whatever

method is chosen, however, should allow for easy changes to a group’s membership. Also,

it should be easy to communicate the group as an argument to a function. For the sake of

BulkClone, it should be straightforward to map objects from a source group to a destination

group.

We propose to group objects as a range of object identifiers. Communicating a range-

based group is as easy as sending two object identifiers, one representing the start, and

another the end, of the range. A range can represent all objects or a single object (start

equal to end). Membership of this type of grouping can be readily changed by altering

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 26

the objects to which one is referring, and moving objects around in the object identifier

namespace (should it be necessary) can be accomplished with bulk operations.

Other ideas for forming groups of objects were considered but rejected.Presenting lists

of objects communicated as arguments was deemed too cumbersome for large sets. The

possibility of maintaining sets at the metadata server and referencing those sets in function

calls was discarded because of the communication necessary to manage the sets, a need

for access control for referencing and changing membership, and set-membership issues

(could an object be in more than one set?). Forming object sets on the fly by referencing

object attributes would be possible if the attribute set on our objects were richer, but such

an approach nas many open questions beyond the scope of this dissertation.

3.3 BulkClone

The BulkClone operation creates copies of all objects in a source set into a destination

set. For our case of range-based bulk operations, objects are mapped one-to-one from a

source object identifier range to a destination object identifier range1. To be successful, a

BulkClone starts with some objects in the source range, and no objects in the destination

range; the ranges must not overlap.

BulkClone(source set, destination set) Make objects of the destination set appear as

copies of corresponding objects in the source set.

It might be reasonable to restrict the ranges used as arguments for a BulkClone. One

might consider disallowing objects in destination ranges from being mentioned in source

ranges. Such a restriction would simplify the logic applied to the bulk operation track-

ing structures, but would also force system users along particular usage paths. With only

restrictions on sources being occupied and destinations being empty, two interesting and

compatible usage scenarios emerge as shown in Figure 3.1 on page 27: prolific clones and

chains-of-clones. A prolific clone uses the source range repeatedly as a parent with many

destination ranges as its children. A chain-of-clones uses a previous destination range as

1A range is inclusive and consists of a starting object identifier and an ending object identifier.

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 27

the source range for subsequent BulkClone operations thus creating a chain where each

clone operation forges a new link.

A B C D

Example of a prolific clone: source remains constant.

A B C D

Example of a chain-of-clones: prior destination is next source.

Figure 3.1: Two manners of using the clone operation

The original source set of objects is labelled “A”. Each clone operation is represented by

an arrow pointing from source to destination set of objects.

The main motivation for providing the BulkClone operation is to support the creation

of storage system snapshots. After formatting a file system in a set of objects (a range of

objects in our case), repeated application of the BulkClone operation can create new copies

of the file system. Any read-only copies become snapshots from which consistent backups

can be made and accidentally deleted files can be recovered. Any read-write copies are

file system forks that may evolve independently from the original file system image. File

system forks provide sandboxes for testing systems on real data or launching near-identical

copies off of a “golden master” system image.

Other possible uses of BulkClone include re-arrangement of the object identifier names-

pace. Such an operation could merge object sets from dis-joint portions of the namespace

by cloning them such that they are adjacent and can be managed as a single, range-based

set. One could also create super-objects by taking objects adjacent in the namespace and

using each for specific attributes – this would be like extended attributes in Microsoft Win-

dows NTFS and NFSv4, or resource forks in Apple file systems. Then, by using BulkClone,

the entire super-object could be moved through the namespace as necessary. Similarly, a

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 28

group of adjacent objects might represent the contents of a directory (or even a directory

tree) in a file system and a snapshot of just the one directory could be made.

The instantiation of a BulkClone takes place on those storage nodes holding portions

of the source object according to the object’s data distribution through the use of a single-

object to single-object Clone command. The data distribution of the destination object,

therefore, is inherited from that of the source object such that both objects reside on the ex-

act same storage nodes. Future copy or migrate commands (not covered here) might move

the objects off of those storage nodes. It is assumed that for speed and space efficiency,

a storage node will have a copy-on-write implementation of the one-to-one Clone opera-

tion. During the course of access to cloned objects, it is possible that a storage node might

exhaust its capacity and require a redistribution of an object to other storage nodes.

3.4 BulkDelete

The BulkDelete operation removes a set of objects from the object identifier namespace

and, ultimately, frees resources consumed by those objects on storage nodes. For our case

of range-based bulk operations, objects within a supplied target range are removed. A range

can span all objects. A successful BulkDelete operation has objects in its target range.

BulkDelete(target set) Delete all objects appearing in the target set of object identifiers.

A primary motivation for providing the BulkDelete operation is to support the cleaning

of objects created by BulkClone operations. Thus, a BulkClone that created a snapshot of

a file system can be removed all at once with a single BulkDelete operation.

Additional uses of BulkDelete match other uses for BulkClone. If BulkClone is used

to merge object sets by moving them around the namespace, then BulkDelete can clean up

the source object sets. If an application were to use super-objects, a BulkDelete would be

the most efficient way to delete a super-object. For a file system that groups files within

directories as adjacent objects, a range-based BulkDelete operation could quickly delete a

directory.

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 29

The instantiation of a BulkDelete takes place on those storage nodes holding portions

of the object being deleted with a single-object Delete command. The capacity consumed

by the deleted object, and its object identifier in the namespace, can then be reclaimed.

3.5 Delayed instantiation

The instantiation of a bulk operation is the act of enforcing the effect of that bulk operation

upon a single object at the storage nodes. Instantiating a BulkClone entails instructing

storage nodes to copy an object. Instantiating a BulkDelete entails instructing storage nodes

to delete the object. To preserve the semantics of our bulk operations, a clone must be

instantiated before subsequent changes can occur to the object being cloned. A delete must

be instantiated before an object with the same object identifier can be created.

There are a few options for when instantiation of a bulk operation might be performed.

A system might use immediate instantiation and cause a bulk operation to take effect before

returning to the caller. This could be troublesome to users of the storage system, because

their request could take a long time to return as would be the case when dealing with a

large set of objects. A client would be secure, however, in knowing that the requested

operation was applied to all targeted objects. An alternative, which we explore in this

dissertation, is to use delayed instantiation of bulk operations. With this strategy the storage

system promises to enforce the effects of the bulk operation but has the option to delay the

work needed until a client might observe the bulk operation’s effect. When using delayed

instantiation, a success code can be quickly returned to the caller, while the work of the

operation is performed later. Under delayed instantiation, when a client accesses an object

affected by a bulk operation, an on-demand instantiation is performed before the client’s

request is allowed to proceed. This adds latency to the client’s operation, but has delayed

work in the storage system until it is strictly required. If a clone is deleted before it is

instantiated, then the work never has to be performed. With delayed instantiation, the

storage system may elect to perform background instantiation during idle time to save on

the added latency of on-demand instantiation.

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 30

Examples of how delayed instantiation can work are shown in Figure 3.2 on page 30.

There we see that instantiation always occurs before a client observes the effects of a bulk

operation. The instantiation can occur before or after a return code is sent back to the caller.

Begin

Metadata server

commits to performing

bulk operation

Metadata server

instantiates

bulk operation

Client receives

bulk operation

return code

Client observes

bulk operation

effects

End

Begin

Metadata server

commits to performing

bulk operation

Metadata server

instantiates

bulk operation

Client receives

bulk operation

return code

Client observes

bulk operation

effects

End

Begin

Metadata server

commits to performing

bulk operation

Metadata server

instantiates

bulk operation

Client receives

bulk operation

return code

Client observes

bulk operation

effects

End

Figure 3.2: Bulk operation process

These are three variations on when bulk operations can be processed and observed by

clients. The two paths correspond to two semantic guarantees associated with operation

execution: an operation is applied sometime between when it is requested and it is observ-

able as having taken place; operation execution confirmation must follow the request for

an operation.

Using delayed instantiation in a distributed, object-based storage system provides sev-

eral benefits. First, the system can quickly return a success code to the caller since the work

will be delayed. Second, the system can save work, since bulk operations are not required

to be instantiated if a client never accesses the affected objects.

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 31

Delayed instantiation is used throughout computing. One example is copy-on-write

where multiple references to a single data structure split to become references to multiple

data structures when a modification is made to the single data structure. This allows for

independent evolution of the data referred to by those initial references and conserves space

and time while the data structure remains unchanged. Similarly, lazy evaluation of expres-

sions until the moment they are required saves on the time required for the evaluation.

The capability-based access control system used in object-based storage can provide

a window of time during which the instantiation of a bulk operation can be delayed. By

revoking capabilities to objects affected by a bulk operation and then accepting it for ex-

ecution, the metadata service can delay instantiation until a client requests access to an

affected object. At the point where a client accesses an object affected by a bulk operation,

an on-demand instantiation must take place.

3.6 Bulk operation tracking

We have considered two primary approaches to tracking delayed instantiation bulk opera-

tions: range splitting and timestamp tracking. The range splitting approach would record

bulk operations in tracking table entries and modify entries that covered objects undergo-

ing instantiation by splitting the range mentioning them. The timestamp tracking approach

would record all object identifier namespace operations along with logical timestamps to

understand their ordering. Ultimately, a combination of range splitting and sequence track-

ing was necessary to correctly track bulk operations and perform required instantiations.

To record the execution of delayed instantiation bulk operations, some information

about them must be retained by the storage system. The arguments to the operation, namely

the set (or sets) of objects affected, are the minimum information. Since we have settled on

using ranges to represent object sets, the starting and ending object identifiers are recorded

in the bulk operation tracking tables. A BulkClone table tracks the source and destination

ranges of clones. A BulkDelete table tracks the target range for deletion.

Range splitting modifies the bulk operation tracking tables as instantiation is performed.

The idea is that, when an operation causes a clone to be instantiated upon an object, the

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 32

bulk operation table entry that tracked the object is removed, split (or trimmed if the ob-

ject is at the start or end of the range), and the entries (or entry) re-inserted. Thus, the

operation on that object is no longer tracked by the bulk operation table and so will not be

instantiated again. This approach leads to significant fragmentation of the tracking table as

instantiations cause the proliferation of table entries.

Timestamp tracking adds more information to the bulk operation tracking tables and

the object table. The idea behind timestamp tracking is that the ordering of events can

be used to determine what instantiation(s), if any, must be performed. A logical clock is

maintained by the metadata server, and each Create operation and each bulk operation store

a logical timestamp with the record of their execution. When a Create adds an object to

the object database, a timestamp is stored. When a BulkClone or BulkDelete is executed,

their arguments are saved along with a timestamp. This approach suffers from requiring

long-term retention of bulk operation information and potentially lengthy calculations to

determine if an instantiation must be made.

By combining range splitting and timestamp tracking, a comprehensive bulk operation

management system can be created – we describe one such solution in Chapter 4 starting

on page 35. Also, ambiguous situations encountered by each individual mechanism can be

reconciled with their combination. Range splitting is used to track which bulk operations

remain to be instantiated. Timestamp tracking allows the overlap of bulk operation ranges

to be tracked while allowing for reasoning about which objects are affected by which oper-

ations.

3.7 Completion and success criteria

For a bulk operation to complete successfully, a number of conditions must be satisfied.

First, successful capability revocation at the bulk operation execution time must be per-

formed. Second, at instantiation time, a sufficient number of storage nodes must be con-

tacted to enact the effects of the bulk operation.

Successful capability revocation is an interesting issue when threshold based encod-

ings are used in data distributions. Revocation involves information about encodings and

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 33

requires that the correct set of storage nodes be contacted. The complexity of revocation

increases as bulk operations are added to a storage system where data distributions are

customizable on extents of objects.

Given an m−o f −n encoding for an extent of an object2, a successful revocation must

be performed at n−m+1 (where n > m) storage nodes to prevent a client from accessing

the data of that extent. By performing revocation at n−m + 1 storage nodes, a correctly

behaving client cannot access data because it will encounter more than m capability errors

when reading or writing data fragments. Consider as an example the case of a 1− o f − 3

encoding (three-way mirroring). Any one storage node holds a complete copy of the data.

In this case m = 1 and n = 3, so n−m + 1 = 3− 1 + 1 = 3, and we see that we must

revoke capabilities from all three storage nodes to prevent a client from reading or writing

fragments (replicas in this case) at storage nodes. The situation holds for other encodings,

such as a 5− o f − 7 which affords protection from double-faults. In the 5− o f − 7 case,

m = 5 and n = 7, so n−m+1 = 7−5+1 = 3, and we see that we must revoke capabilities

from three storage nodes. This keeps a client from being able to successfully reach a set of

five storage nodes necessary to read or write fragments.

Applying the limits for capability revocation for a single bulk operation can be done

with knowledge of all objects involved, all of the extents of the objects, all of the en-

codings and their thresholds and knowing the storage nodes holding fragments for each

of those encodings. This information creates revocation sets over the storage nodes that

must be collated and then applied by sending revocation messages and awaiting sufficient

responses to prevent client access. The generation of these revocation sets is complex

without maintaining additional indices within the metadata server databases. A sufficient

revocation can be accomplished by keeping track of the least fault tolerant encoding in the

system and revoking capabilities from the set of all storage nodes. As long as revocation is

acknowledged by all − least + 1 storage nodes, then we can be content that no client can

access any fragments of data for the objects affected by a bulk operation.

When it becomes time to instantiate a bulk operation, at least m storage nodes must

2This treatment of revocation and instantiation limits applies to comprehensively versioning storage (such

as are described in [1] and [81]) using quorum based encodings where the quorum is of size m.

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 34

acknowledge the instantiation request for an extent. This is a situation analogous to revo-

cation but for the single object upon which a bulk operation is being instantiated, we need

to consider its storage nodes, encodings and thresholds for all extents. As long as m stor-

age nodes get the instantiation message for each extent (where m is a per-extent value), the

instantiation succeeds.

3.8 Mitigating costs

Delayed instantiation bulk operations obviously come with costs. One can see that, based

on range splitting, fragmentation of the bulk operation tracking tables will be an issue. The

re-acquisition of revoked capabilities by clients adds latency to the next access after a bulk

operation executes. And, the on-demand instantiation of bulk operations at storage nodes

further slows that next access.

Two of the three costs can be addressed with a single mechanism with which we ex-

periment: background instantiation. A background instantiation is an instantiation of a

bulk operation upon an object that happens some time between operation execution and

the first time a client requests access to it. This can help with cleaning up fragmented bulk

operation tables and save on contacting storage nodes to perform on-demand instantiation.

The protocol steps of a client realizing that a capability is invalid and re-acquiring a new

capability are not ameliorated. A background instantiation comes at little cost if it is done

during idle time at the metadata server.

Chapter 4

Implementation

This chapter describes the implementation of the various components of the distributed,

object-based storage system into which we have engineered support for delayed instan-

tiation bulk operations. This implementation provides us a platform for evaluating bulk

operations and delayed instantiation. The software components of client, storage node, and

metadata server are described as they relate to bulk operations. Background instantiation

strategies for mitigating the costs of delayed instantiation are presented. An NFS server is

described that uses the BulkClone operation for creating snapshots and forks of its served

file system. The protocol steps for operations and their interactions with bulk operations

conclude the chapter.

4.1 Client

The client library requires little specialization for bulk operations. It passes commands

to the metadata server and storage nodes. It caches metadata and capabilities, as appro-

priate. It handles the cases where an attempted operation to a storage node returns errors

regarding invalid capabilities. The only extension needed was an interface for invoking

bulk operations.

BulkClone(src start, src end, dst start) A command sent from the client to the meta-

data server that will cause all objects in the source range to be copied, one-to-one,

35

CHAPTER 4. IMPLEMENTATION 36

into the destination range. The end of the destination range can be calculated from

the size of the source range.

BulkDelete(target range start, target range end) A command sent from the client to

the metadata server that will cause all objects in the target range (from target range start

to target range end, inclusive) to be removed from access by clients of the storage

system.

4.2 Storage node

The storage node also requires minimal extension.The base storage node evolved from the

S4 project and the PASIS project. It provides a block-based interface to objects where, for

a given block number, it stores data provided during a write and retrieves any data for a

block during a read.

Individual storage nodes are instructed to revoke capabilities in bulk, to clone individ-

ual objects and to delete individual objects. Capabilities and revocations are tracked as

integers: if a capability is less than the tracked revocation, it is rejected as invalid. Bulk

revocation of capabilities sets the tracked revocation for affected objects, causing existing

capabilities to be rejected. Bulk capability revocation is used by the metadata server in the

course of bulk operations and instructs the storage node to reject a range of capabilities. To

process the clone and delete commands, a storage node first locates the particular object

in its data structures. When deleting an object, the storage node marks the data structures

used by that object for reclamation and removes its object identifier from service. When

cloning a source object, the storage node duplicates the current view of an object as the

destination object.

The storage nodes used in our prototype system already had the ability to delete single

objects. We added a BulkRevoke operation that expanded upon an existing single-object

capability revocation call. We added a Clone operation that did not require externally read-

ing a source object and writing it to a destination object. The Clone operation internally

copies the source object to the destination object. A more ideal implementation would em-

CHAPTER 4. IMPLEMENTATION 37

ploy copy-on-write between the source and destination object data, but this implementation

short-cut should suffice when objects are small and can be wholly contained in memory.

BulkRevoke(capability sequence number, start OID, end OID) Reject capabilities with

a capability sequence number less than that given as an argument for objects be-

tween start OID and end OID, inclusive.

Clone(source OID, destination OID) Make a copy of the current view of the source

object under the name of the destination object.

4.3 Metadata server

The bulk operations capable metadata server consists of three primary components: a

client-facing front-end, a back-end database, and a helper application for instantiation.

4.3.1 Front-end

The front-end to the metadata server is the point-of-entry for remote procedure calls (RPCs)

originating from clients. It is a C++ program that mostly acts as a translation layer from

the RPC format for client dialogue to the PostgreSQL database where server-side functions

implement the service logic for the requests. The translation is done automatically using

the SQL standard for “embedded SQL in C”; compilation of an annotated C/C++ program

is preceded by an “embedded SQL in C” pre-processor that replaces annotations with calls

to library functions and standard C pre-processor macros.

When started, the front-end joins itself to the storage system by registering as a meta-

data server. Various checks of the back-end database are performed and, if necessary, it is

initialized. A service loop receives client requests and hands them off to worker threads for

servicing. When this service loop is idle, attempts at instantiating bulk operations in the

background are made (see Section 4.4 on page 40).

Capability revocation is performed by this front-end program and uses the BulkRevoke

RPC to storage nodes. Revocation is accomplished by informing storage nodes to reject

CHAPTER 4. IMPLEMENTATION 38

capabilities (integers) lower than a particular value which is controlled by the metadata

server. Since the database does not directly participate in the RPC dialogue of the storage

system, as bulk operations enter the front-end, the necessary storage nodes are contacted

with Revoke messages. If there is a problem with revocation, then there is no need to go to

the back-end — in this case an error message returned to the client. If there is a problem at

the back-end that causes a bulk operation to abort, then the capabilities have already been

revoked and clients will need to re-contact the metadata server.

There were two additional functions that needed to be added to the metadata server

interface, one for each bulk operation supported.

BulkClone(src start, src end, dst start) Cause all objects in the source range to be copied,

one-to-one, into the destination range. The destination range is calculated from

dst start and the size of the source range.

BulkDelete(target range start, target range end) Cause all objects in the target range

to be removed from access by clients of the storage system.

4.3.2 Back-end

The back-end of the metadata server holds the data structures containing metadata, im-

plements the algorithms to satisfy client requests, and performs delayed instantiation bulk

operations. It is built around a PostgreSQL database with tables for storing metadata and

server-side functions written in the pl/pgsql scripting language to handle RPC requests.

The use of an off-the-shelf database gives built-in transaction support and high-level pro-

gramming in a declarative language, SQL.

On a clean start of the metadata server, the front-end creates the tables and indices in the

metadata database, some tables with values acting as stand-ins for C-language enumerated

types, and installs the server-side functions for handling client requests.

A configuration table holds variables that control the runtime behavior of the server-side

database functions. One setting forces immediate instantiation of bulk operations. Another

setting enables or disables all bulk operation code paths.

CHAPTER 4. IMPLEMENTATION 39

There are two tables for tracking bulk operations: one for BulkClone and one for

BulkDelete. These tables track the arguments to their respective bulk operations and a

sequence number indicating the point in the evolution of the system at which the bulk op-

eration occurred. A BulkDelete table entry tracks the starting and ending object identifiers

of the range being deleted. A BulkClone table entry tracks the starting and ending ob-

ject identifiers of the source and destination ranges. Trigger functions, database functions

invoked under certain conditions, are executed upon insertion into the tables. The trigger

functions make sure that if a row is inserted without a sequence number, the latest sequence

number is incremented and assigned to the row. If a row is being inserted that already has

a sequence number, then it is accepted without change

A database table tracks objects that exist on storage nodes. This object table tracks the

object identifier, length of the byte stream, and a sequence number representing the point

at which the object was created. The object identifier for each entry must be unique.The

length for each object corresponds to the highest offset reported by a FinishWrite command.

The sequence number is not necessarily unique across all rows of this table. If an object is

created on its own, then it gets a unique sequence number. When an object enters the object

identifier namespace by virtue of a BulkClone operation, all objects within the destination

range of that clone will share the same sequence number as they were all created at the

same instant.

There are two additional tables, each for storing metadata describing the backing store

for byte-ranges of individual objects. One of these tables, the MetadataExtent table, tracks

ranges that have already had a FinishWrite call on them. The other table, the PendingWrite

table, tracks the pending writes submitted during ApproveWrite calls by clients. Any byte

range of an object is only tracked in one of these tables at a time. If compatible metadata is

inserted adjacent to existing metadata, the ranges are merged into a single row of the table.

The metadata is moved from the pending write table to the tracking table, and the object

length may be updated, when FinishWrite calls are made. Data from the tracking table is

returned when client libraries make Lookup calls.

Server-side functions implement the logic of the metadata server necessary for com-

pleting client-initiated RPCs. For each of the interface functions, Lookup, Enumerate, Ap-

CHAPTER 4. IMPLEMENTATION 40

proveWrite, FinishWrite, BulkClone and BulkDelete, there is a primary service function. A

number of other functions implement common code called by these primary functions. The

functions access the database tables as necessary and execute the loops, control statements,

and SQL queries that embody the necessary algorithms for service in a bulk operations

capable metadata server.

The primary, and most of the secondary, functions are written in pl/pgsql. Two func-

tions are written in C, with appropriate wrappers for use by pl/pgsql. One of these C

functions calculates the capabilities returned by a Lookup. The other C function acts as a

gateway for communication with the “helper” application.

4.3.3 Helper

The helper application is used by the metadata server back-end for on-demand instantia-

tion of bulk operations. Since there is no direct way for pl/pgsql functions to communicate

externally with the storage system, a pl/pgsql stub function is provided. This stub com-

municates via IPC with the helper application. When the helper application receives a

command, it forwards that command to the addressed storage nodes. As information is

returned by the storage nodes, the helper application collates the replies and directs them

back across IPC to the pl/pgsql function.

4.4 Background instantiation

Background instantiation of bulk operations may be performed by the front-end of the

metadata server to reduce the record-keeping overhead of bulk operations and to speed

subsequent client access to affected objects. Record-keeping overhead grows with almost

every bulk operation instantiation, causing searches of bulk operation tables to take longer.

Also, when clients trigger on-demand instantiation, they incur additional latency as their

requested operation is performed. Background instantiation, occurring during metadata

server idle time between bulk operation acceptance and an on-demand instantiation, cleans

up tracking information and eliminates instantiation in a client’s critical path. Idle detection

CHAPTER 4. IMPLEMENTATION 41

is set to be very aggressive: if the main loop of the metadata server front-end is idle for

1 ms, it may trigger background instantiation operations.

For experimentation purposes, background instantiation can be (de-)activated through

the use of a command line argument presented when the metadata server is started. When

the metadata server processing loop times-out waiting for work, it may initiate a back-

ground instantiation. There are five algorithms that may be set from the command line (or

interactively) for choosing an operation and an object upon which to instantiate it.

1. Random bulk operation, random object

Randomly pick the BulkClone or BulkDelete table for processing. Select a random

table entry. Instantiate the bulk operation on a randomly selected object from the first

100 objects affected by the selected bulk operation table entry.

2. FIFO bulk operation, lowest sequence number

Between the BulkClone table and BulkDelete table, select the entry with the lowest

sequence number1. Process the bulk operation on the object with the lowest object

identifier.

3. LIFO bulk operation, highest sequence number

Process the highest object identifier from the bulk operation table entry (either Bulk-

Clone or BulkDelete) that has the highest sequence number.

4. Largest span, lowest object identifier

Process a bulk operation from the bulk operation table entry that spans the most

object space (maximum difference between starting and ending object identifiers,

which does not necessarily correspond to the most objects since a range could span

millions of objects but be very sparsely populated). Break ties by processing the

bulk operation affecting the lowest numbered object identifier. Process the lowest

numbered object affected by the bulk operation.

1There is no need for a tiebreaker since the same sequence number could not be shared by a BulkClone

and a BulkDelete. For the case of a previously split bulk operation table entry, the lowest sequence number

decides the entry to process.

CHAPTER 4. IMPLEMENTATION 42

5. Smallest span, lowest object identifier

Process a bulk operation from the bulk operation table entry that spans the least

object space (minimum difference between starting and ending object identifiers).

Break ties by processing the bulk operation affecting the lowest numbered object

identifier. Process the lowest numbered object affected by the bulk operation.

The efficacy of these algorithms is compared in Section 6.5 on page 109 and in Sec-

tion 6.6.2 on page 137

4.5 NFS server

An NFS server that uses the BulkClone operation to create snapshots and forks of its file

system was built for experimentation and to demonstrate feasibility. Slight changes to a

pre-existing NFS server that stores its directory and file information in objects are made to

introduce this new functionality.

The NFS server is an application that acts as a client of the distributed, object-based

storage system.. It does so on behalf of NFS clients. As such, it is acting as a sort of proxy,

or gateway, for NFS client access to the objects by overlaying a pathname and filename

hierarchy atop the flat object namespace and using individual objects as containers for file

and directory data. This relationship between NFS clients, the NFS server, metadata server

and storage nodes is shown in Figure 4.1 on page 43.

The NFS server operates over TCP/IP and follows most of the NFSv3 specification [14].

We diverge in that writes are not guaranteed to reach stable storage before returning a suc-

cess code to a client. The storage nodes use a shared memory area to emulate NVRAM, and

this area serves as a staging area for dirty data. This model follows that of high-performance

production systems that actually contain NVRAM (with data persistence across reboots) for

staging dirty data [26, 54]. The NFS server considers data stably stored once a write oper-

ation has been acknowledged by a storage node, with no guarantee of the data being able

to survive a reboot.

The exported NFS file system is rooted at a root-object (similar to a super-block of

a block-based file system). This object contains information about the formatting of the

CHAPTER 4. IMPLEMENTATION 43

NFS Clients

Storage Nodes

Metadata Server

NFS Server

Figure 4.1: NFS server as storage system client

The NFS server is a client of the object-based storage system. It translates NFS client file

and directory requests into object accesses.

file system. The root directory object is at a well-known location based on an allocation

scheme stored as part of the root-object. All directory objects contain mapping information

from file and directory names to object identifiers.

To track the snapshots (and forks) of the NFS file system, structure is applied to the

object identifiers used. This structuring is not done to work around any limitations of

the implementation; it is simply a breakdown that appears to work well. The 128 bit object

identifier is separated into three components. The uppermost 32 bits are static and represent

the instance of an NFS server within the storage system — many NFS servers can be

running and using the object-based storage system simultaneously. The following 32 bits

represent the particular instance of a clone of the file system. The lowest 64 bits represent

the file or directory within a particular clone. A file system served by an NFS server has its

top 32 bits always the same. A clone of a file system has the top 64 bits always the same.

CHAPTER 4. IMPLEMENTATION 44

To create snapshot of the NFS file system, the server goes through a series of three steps.

First it suspends access by NFS clients and flushes all caches of dirty data. By suspending

access, no other NFS client requests can make forward progress until the snapshot has been

made. The push of all dirty data to the storage system ensures that a consistent set of client-

written information is captured in the snapshot. Second, it makes the snapshot by invoking

BulkClone through the storage system’s client library API. The source range argument

to the BulkClone operation is drawn from the current range of objects used by the NFS

file system. The destination range is specified in the command triggering the operation.

Once acknowledgement of the successful completion of the BulkClone is received, tracking

information is written to the root-object of the destination range of the clone. Third, the

caches are re-enabled and NFS client accesses are allowed to resume.

One issue with making file system snapshots in this manner is the contents of the objects

holding directory entries. Since a directory tracks a mapping of file names (which do not

change during a snapshot) to object identifiers (which do change), all directory entries in

the snapshot will refer to objects in the original file system. An example of this sort of

situation is shown in Figure 4.2 on page 45.

To address this situation, the post-snapshot destination range file system has a note

placed in its root-object indicating the range of objects contained by the file system, and

directory entries are mapped into this range upon access. When the file system starts, the

root-object is read. Whenever directory entries are read, the objects that correspond to file

names are checked. If the object identifier is outside the range of objects tracked, then it

is mapped into the correct range. Only objects cloned from the previous incarnation of the

file system will need to be re-mapped, and only until their directory entry is accessed and

written out to storage with corrected values. Any newly created objects will have object

identifiers in the “current” object range from the start; their directory entries will not need

interpretation.

Using this re-mapping on the fly, the contents of the directory entries of the file system

do not need to be re-written at snapshot time. The correct interpretation can be performed (a

simple comparison check and bit substitution) at access time. As directories are accessed,

the mapping of file names to object identifiers can be lazily updated.

CHAPTER 4. IMPLEMENTATION 45

"fooFooFOO"

"barBarBAR"

"FileBar"

"FileFoo"

OxSRCR1001

OxSRCR1002

0xSRCR1001

0xSRCR1002

0xSRCR1000

"fooFooFOO"

"barBarBAR"

"FileBar"

"FileFoo"

0xSRCR1002

OxDSTR1001

0xDSTR1000

OxDSTR1002

0xSRCR1001

Object Namespace

Figure 4.2: Directory contents after cloning

After executing a BulkClone operation the contents of a destination directory object asso-

ciate file names with objects in the source set. In this example, a BulkClone of objects

from the source range (0xSRCR0000,0xSRCR f f f f) have been cloned into the destina-

tion range (0xDSTR0000,0xDSTR f f f f). The directory object 0xSRCR0000 has been

cloned to 0xDSTR0000, and the contents of 0xDSTR0000 point to objects in the range

(0xSRCR0000,0xSRCR f f f f). For clients to access the correct objects when traversing the

destination objects, the file server must only replace the “SRCR” with “DSTR” in the object

identifiers that it encounters in directory entries.

An alternative implementation could skip storing the remapped portion of object iden-

tifiers in the directory entries altogether. Then, when accessing an object, the correct in-

formation about the mapping and the remaining object information in the directory entry

could be combined to form an object identifier. This would obviate the re-mapping done

with the implemented approach. We used the re-mapping approach to minimize the amount

of code that needed to be touched in the NFS server.

4.6 Protocol

There are seven basic operations available to clients through the client library. The API

for the basic operations was sketched out in Section 2.4.4 on page 17 and for the bulk

CHAPTER 4. IMPLEMENTATION 46

operations in Sections 3.3 and 3.4 on pages 26 and 28.

This section presents those operations in the context of the RPC protocol between client,

metadata server, and storage node. The instantiation of bulk operations can occur during

the normal execution of the protocol and is shown in the following diagrams.

A system can have many clients, each of which can be issuing commands concurrently

in the storage system. The metadata server receives the requests from these clients and

processes them. There are potentially many storage nodes within the system. Subsets of

these storage nodes are contacted by clients to perform reads and writes of object data.

Storage nodes are also contacted to revoke capabilities and instantiate bulk operations. In

the diagrams shown in this section, it should be understood that the column representing

the storage nodes, while only labeled as “storage node”, really applies to any number of

storage nodes.

4.6.1 Create

The Create() command adds an object to the object namespace. There is one argument: an

object identifier. If the named object does not already exist, then it will be added to the

namespace.

With delayed instantiation bulk operations, the Create of an object may cause the meta-

data server to contact storage nodes to delete a previously existing incarnation of an object.

Consider, for instance, the following sequence of events from the client application’s per-

spective:

1. Create(OID = 100)

2. Write(OID = 100, offset, data)

3. BulkDelete(range = 50 . . . 150)

4. Create(OID = 100)

A client creates an object, writes it, executes a BulkDelete that affects it, and then re-

creates the object. During the given sequence, the protocol exchange as shown in Figure 4.3

CHAPTER 4. IMPLEMENTATION 47

on page 48 occurs. Because of the delayed instantiation strategy for implementing bulk

operations, the second Create takes longer as the metadata server must inform the storage

node(s) that a Delete must be instantiated.

4.6.2 Lookup

Although strictly an internal command, since it is a sub-step of Read and Write, Lookup is

the primary trigger for causing the instantiation of clones.

The Lookup() command returns metadata for an object to the caller. There is one ar-

gument: the object identifier for the object being queried. This command is used by the

client library to retrieve metadata and capabilities from the metadata server. The client li-

brary uses this function as part of Read and Write operations, if it does not have cached

capabilities to access an object.

The Lookup operation can trigger BulkClone instantiation. If it is executed upon an

object that is either the source or destination of a BulkClone, then both objects must be

created so that they may evolve independently. A Lookup that triggers an instantiation

takes longer than one that does not, because of the extra step where the metadata server

contacts the necessary storage node(s). Such an interaction is shown in Figure 4.4 on

page 49.

If the object does not exist, an error is returned. If the object does exist, any metadata

extents for the object will be returned together with capabilities for accessing any existing

data on storage nodes.

4.6.3 Enumerate

The Enumerate() command returns a list of object identifiers that exist in the namespace

at a point in time. There are three arguments: a starting object identifier, an ending object

identifier, and a number of objects to return (up to some maximum, set to 100 objects in

our implementation).

A client sends an Enumerate command to the metadata server. All processing occurs at

the metadata server; no storage nodes are involved.

CHAPTER 4. IMPLEMENTATION 48

client metadata server storage node

Create(100)

success

Lookup(100, offset, num_bytes)

success, metadata, capability

ApproveWrite(100, data_distribution)

success, capability

SSIO_Write(capability, 100, offset, data)

success

FinishWrite(100, data_distribution)

success

BulkDelete(50 ... 150)

Revoke(50 ... 150)

success

success

Create(100)

Delete(100)

success

success

Figure 4.3: Create and Re-Create with BulkDelete

CHAPTER 4. IMPLEMENTATION 49

client metadata server storage node

Create(100)

success

Lookup(100, offset, num_bytes)

success, metadata, capability

ApproveWrite(100, data_distribution)

success, capability

SSIO_Write(capability, 100, offset, data)

success

FinishWrite(100, data_distribution)

success

BulkClone(50 ... 150, 1050)

Revoke(50 ... 150)

success

success

Write(capability, 100, offset, data)

invalid capability

Lookup(100, offset, num_bytes)

Clone(100, 1100)

success

success, metadata, capability

Figure 4.4: Lookup with BulkClone

CHAPTER 4. IMPLEMENTATION 50

client metadata server storage node

Enumerate(start, end, num)

success, object list

Figure 4.5: Protocol for Enumerate

A successful return from an Enumerate() command provides the caller with a number

of objects in the given start–end range, starting with the lowest object identifier (the start)

proceeding towards higher object identifiers (the end).

The presence of bulk operations in the storage system does not have an impact on the

protocol for the Enumerate command. The effect is felt in the algorithms necessary to

reason out the actual contents of the namespace when bulk operations are creating and

removing objects. The algorithms are described in Section 5.4.1 on page 73.

If there are fewer than the requested number of objects in the range, then all of them will

be returned. There is no indication to the caller that they have received all object identifiers,

if the last object in the returned list is less than the ending object provided as an argument.

Likewise, there is no way for the caller to know that there are more objects in the requested

range if the returned list contains the requested number of objects and the last identifier in

the list is less than the ending object.

A client can indirectly get a consistent enumeration of a range of objects. Given that

there is a limit on how many objects can be returned by an Enumerate command at a time,

it is impossible to directly get the state of a large number of objects at one instant. But, if

used in conjunction with the BulkClone command and some object identifier translation, it

is possible to get a consistent view of portions of the storage system. By first cloning the

namespace of interest, and then iteratively enumerating over the destination range, a client

sees a consistent view of the source range since the BulkClone operation is atomic. All that

is required is a little math on object identifiers to translate them back from the destination

range into the source range. When the enumeration is complete, the destination range and

its objects can be removed with a BulkDelete command. A disadvantage of this approach

is that BulkClone instantiation will occur, if clients access objects in the source range while

CHAPTER 4. IMPLEMENTATION 51

the enumeration is ongoing.

4.6.4 Delete

The Delete() command removes a single object from the object namespace, causing the

resources of that object to be freed. There is one argument: the object identifier of the

object to be deleted.

A client issues a Delete command to the metadata server. Internally, the metadata server

may choose to represent the Delete as a BulkDelete and delay its instantiation or it may

choose to immediately instantiate the operation by contacting storage nodes. Regardless of

this choice, the storage nodes must be contacted to revoke capabilities. With the option of

deleting immediately, or later, the metadata server can delay work at storage nodes required

to free large objects.

client metadata server storage node

Delete(object)

Revoke(object)

success

Delete(object)

success

success

Figure 4.6: Protocol for Delete

It is obvious, given the protocol as shown in Figure 4.6, that some optimization could

be performed. Batching the Delete and Revoke commands sent from the metadata server

to the storage node would save a network round-trip.

The Delete() command will succeed unless there is trouble encountered within the

MDS. No guarantees are made as to when the resources of the object will be freed, other

than that it will happen before another object with the same object identifier can be created.

CHAPTER 4. IMPLEMENTATION 52

4.6.5 Write

The Write() command places data into the byte-stream component of an object. There are

four arguments: the object identifier, the byte-offset at which to start writing, a buffer of

data to be written and the length of that buffer.

The Write command issued by a client into the system goes through several steps. First,

the client library must acquire metadata and capabilities. A Lookup from the client to the

metadata server acquires metadata and capabilities sufficient for handling over-writes of

data in existing portions of an object. If it is a write to an unallocated portion of an object,

the client library must log its intent to write through the use of the ApproveWrite command

and must complete its write using the FinishWrite command. The actual transfer of data

between the client and the storage nodes is accomplished by the SSIO Write message. A

diagram of this protocol, without bulk operations, in show in Figure 4.7 on page 52.

client metadata server storage node

Lookup(100, offset, num_bytes)

success, metadata, capability

ApproveWrite(100, data_distribution)

success, capability

SSIO_Write(capability, 100, offset, data)

success

FinishWrite(100, data_distribution)

success

Figure 4.7: Write protocol with allocation

During the protocol with bulk operations, the metadata server may have to instantiate

clones that are children of the object being accessed. Or, it may have to instantiate the

object being accessed as a child of a clone. This latter situation is shown in Figure 4.8

CHAPTER 4. IMPLEMENTATION 53

on page 53. The former situation only differs in the arguments of the Clone sent from the

metadata server to the storage node.

When a write triggers an instantiation, that instantiation only needs to occur for the

first access to the object. Once the instantiation has taken place, future write operations

(assuming no further bulk operations are issued) proceed quickly and without the penalties

associated with bulk operations (capability revocation and bulk operation instantiation).

client metadata server storage node

BulkClone(50 ... 60, 100)

Revoke(50 ... 60)

success

success

Lookup(100, offset, num_bytes)

Clone(50, 100)

success

success, metadata, capability

ApproveWrite(100, data_distribution)

success, capability

SSIO_Write(capability, 100, offset, data)

success

FinishWrite(100, data_distribution)

success

Figure 4.8: Write triggering instantiation of a clone

CHAPTER 4. IMPLEMENTATION 54

4.6.6 Read

The Read() command returns data from the byte-stream component of an object. There are

four arguments: the object identifier, the byte-offset at which the read begins, a buffer to

receive the data and the length of the buffer.

Before data can be read directly from storage nodes, the client library must acquire

metadata and capabilities to the object. This is done through the Lookup command sent to

the metadata server. The actual transfer of data between the client and the storage nodes is

accomplished by the SSIO Read message.

A Read can trigger clone instantiation in the same ways as the Write command. The

object being read, or objects cloned from it, might need to be instantiated. The former sit-

uation is shown in Figure 4.9 on page 54. The latter situation only differs in the arguments

of the Clone sent from the metadata server to the storage node.

client metadata server storage node

BulkClone(50 ... 60, 100)

Revoke(50 ... 60)

success

success

Lookup(50, offset, num_bytes)

Clone(50, 100)

success

success, metadata, capability

SSIO_Read(capability, 50, offset, data)

success, data

Figure 4.9: Read triggering instantiation of a clone

CHAPTER 4. IMPLEMENTATION 55

When a read triggers an instantiation, that instantiation only needs to occur for the

first access to the object. Once the instantiation has taken place, future read operations

(assuming no further bulk operations are issued) proceed quickly and without the penalties

associated with bulk operations (capability revocation and bulk operation instantiation).

4.6.7 BulkDelete

The BulkDelete() command removes objects within its target range from the object names-

pace. There are two arguments that comprise the target range for the delete: the starting

object identifier and the ending object identifier .

Like with the single-object Delete() command, the objects covered by the target range

of a BulkDelete() will be made unavailable for access and any resources occupied by the

objects will be freed before another object with the same object identifier can be created.

If the target range is not occupied (contains no objects), then the operation will fail as

there is nothing to delete. If there is an internal error, then the operation will fail.

Figure 4.10 on page 55 shows the protocol for executing a BulkDelete operation. To

restrict access prior to instantiation, the metadata server only needs to revoke capabilities

at the storage nodes.

client metadata server storage node

BulkDelete(50 ... 150)

Revoke(50 ... 150)

success

success

Figure 4.10: BulkDelete

CHAPTER 4. IMPLEMENTATION 56

4.6.8 BulkClone

The BulkClone() command creates new objects in the object namespace by making one-to-

one copies of all objects in a source range to corresponding objects in a destination range.

There are three arguments: the beginning and ending object identifiers for the source range,

and the beginning object identifiers for the destination range. The ending object identifier

of the destination range can be calculated from the span of the source range.

If the source range is not occupied (contains no objects), then the operation returns an

error. If the destination range is occupied by any objects the operation fails and returns

an error. This is done so that our implementation will not have to perform an exhaustive

check for one-to-one correspondence between objects already existing in the source and

destination ranges. If the source and destination ranges do not cover/span the same number

of object identifiers, or if they overlap, an error is returned. Other internal errors (e.g.,

inability to revoke capabilities at sufficient storage nodes) might also cause the operation

to fail.

Figure 4.11 on page 56 shows the protocol for executing a BulkClone operation. In the

protocol’s Revoke step, there is no need to revoke capabilities for the destination range of

the clone as those object are guaranteed not to exist by the semantics of the operation.

client metadata server storage node

BulkClone(50 ... 150, 1050)

Revoke(50 ... 150)

success

success

Figure 4.11: BulkClone

Chapter 5

Data structures and algorithms

This chapter provides details of how bulk operations are implemented within our dis-

tributed, object-based storage system prototype. First, the data structures are described.

They are the repositories of information about the existence of objects, their corresponding

metadata, and the state of unapplied bulk operations within the system. Second, the core

algorithms for coping with bulk operations are described. Third, the basic operations and

their integration with bulk operations are described. Fourth, the flexibility of bulk operation

semantics for BulkClone and BulkDelete and the correctness of the system in the face of

failures are discussed.

5.1 Data structures

Various data structures are maintained by the metadata service in order to track information

necessary to determine the existence of objects and to read and write their data. For the

most part, the data structures consist of tables for tracking information.

5.1.1 Sequencer

The logical clock of the metadata server is maintained as a SQL SEQUENCE object. Each

time a logical timestamp is requested of the object, it increments. Rather than maintaining

57

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 58

a counter in a table, this feature of SQL was used.

5.1.2 Object table

The object table tracks objects that have been individually created and/or those that have

metadata associated with them1. Information maintained includes the object identifier, the

length of the byte-stream component of the object, and a logical timestamp indicating the

creation time relative to other object creation/deletion in the system. Some objects that are

tracked in this table may not exist because they are covered by a BulkDelete operation, but

they are maintained here until the delete is instantiated.

The object identifiers are unique across all entries. The timestamp is not unique across

all entries as a BulkClone operation can create many objects at the same logical time.

5.1.3 BulkDelete table

The BulkDelete table is the first of the two bulk operation tracking tables. All delete opera-

tions awaiting instantiation are recorded in this table. As a BulkDelete operation is issued,

the target range supplied as an argument is trimmed to only represent existing objects. This

step involves internal Enumerate operations to discover the true limits to the deleted range.

The trimmed range and a logical timestamp are entered in the table when a BulkDelete is

executed.

As deletes are instantiated, the BulkDelete table entries are split and trimmed. The split

occurs at the object identifier of the delete that is instantiated. Similarly to the way the

target range is trimmed at initial execution time, when instantiations occur the resulting

ranges are also trimmed through the use of internal Enumerate operations. The resulting

ranges are re-inserted with the original timestamp representing the logical time at which

the BulkDelete occurred.

1When metadata is associated with an object, there is data on the storage nodes.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 59

5.1.4 BulkClone table

The BulkClone table is the second of two bulk operation tracking tables. All clone opera-

tions awaiting instantiation are recorded in this table. The BulkClone table holds source and

destination ranges for cloned objects. As a BulkClone operation is issued, the source and

destination ranges supplied as an argument are trimmed to only represent existing objects.

The source range is used to guide the process and internal Enumerate operations are used to

trim a split range such that existing objects are at its limits. The corresponding destination

range is created based on the source range. The resulting ranges are re-inserted with the

original timestamp that represents the logical time at which the BulkClone occurred.

5.1.5 Object metadata tables

There are two tables that track object metadata. The PendingWrite table tracks metadata

extents for which clients have performed ApproveWrite commands, but have not yet issued

FinishWrite commands. The ExtentMetadata table tracks those portions of objects that

have been the targets of FinishWrite commands. Other than the usage of the tables, they

are identical.

Both tables track information about the byte range and data distribution for objects. The

data distribution information includes block size, encoding algorithm, threshold encoding

parameters and an ordered list of storage nodes. These items are described in Section 2.4.3

on page 14.

5.2 Implications of bulk operations

The two bulk operations, BulkClone and BulkDelete, were designed and built to be of

general use. This means that there are fewer restrictions on their use than could have been

made in a simpler system. Correspondingly, their construction is complicated. This section

describes some of the interesting interactions possible with these bulk operations.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 60

5.2.1 BulkClone

The BulkClone operation accepts two arguments: a source range and a destination range of

objects. The source range must describe a portion of the object identifier namespace that

contains objects. The destination range must be empty. Objects are made to appear in the

destination range, on a one-to-one basis with the object in the source range, as a result of

execution.

The storage system does not care how clients use the BulkClone operation, as long as

the initial conditions are met and the post-conditions can be satisfied. It is apparent that

there are two patterns in which clients could use repeated BulkClone operations (e.g., for

scheduled, periodic file system snapshots).

In the first pattern, a single source range is repeatedly used along with different des-

tination ranges. This is a prolific clone situation in which a single “parent” source range

has many “children” that are the destination ranges. If we allow capital letters to represent

non-overlapping ranges of objects, the following sequence illustrates the prolific clone idea

through the sequential execution of BulkClone operations:

1. BulkClone(A, B)

2. BulkClone(A, C)

3. BulkClone(A, D)

A result of the execution of this series of commands is shown in Figure 5.1 on page 60. In

the illustration, the double-headed straight line represents the object identifier namespace

as a number line. Each of the lettered boxes represents a range of objects. The three curved

arrows represent the three BulkClone operations.

A B C D

Figure 5.1: Prolific clones

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 61

In the second pattern, a destination range of a previous BulkClone is used as the source

range for a subsequent BulkClone (along with a fresh destination range). This is a chain-of-

clones in which the BulkClone operation is the “chain link” that connects the ranges of des-

tination → source → destination. If we allow capital letters to represent non-overlapping

ranges of objects, the following sequence illustrates the prolific clone idea through the se-

quential execution of BulkClone operations:

1. BulkClone(A, B)

2. BulkClone(B, C)

3. BulkClone(C, D)

A result of the execution of this series of commands is shown in Figure 5.2 on page 61. In

the illustration, the double-headed straight line represents the object identifier namespace

as a number line. Each of the lettered boxes represents a range of objects. The three curved

arrows represent the three BulkClone operations.

A B C D

Figure 5.2: A chain-of-clones

When considering the delayed instantiation of BulkClone operations, these two usage

patterns have implications for the triggered instantiations done in-line with client requests.

This comes about because instantiating a clone must sever its ties with other objects in a

copy-on-write manner.

So, for an access to a parent object in a prolific clone situation, all child objects must

be instantiated2. This could potentially be many instantiations. While they could mostly

2Instead of instantiating all children of the parent, a single child could be instantiated and then the entries

within the BulkClone table altered to use the instantiated child as the new parent for the other clones. For

example, consider object A as a clone parent for objects B, C, and D. When accessing object A, the simplest

instantiation (which we perform) is to instantiate B, C, and D as clones of A. One could instantiate only B as

a clone of A, and then alter the BulkClone table such that B is the parent object for C and D without violation

BulkClone operation semantics.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 62

proceed in parallel, variation in response times will lengthen the overall instantiation time,

further delaying the triggering request made by a client. For a chain-of-clones, only a single

child clone is ever instantiated. This is a factor to be taken into consideration by a client

performing BulkClone operations.

5.2.2 BulkDelete

The BulkDelete operation accepts a single argument: a target range of objects to delete.

The target range must have “live” objects in it; i.e., there must be something to delete.

The objects to be deleted are made to immediately disappear from the object identifier

namespace and can be re-used.

The expected common use of BulkDelete is to quickly wipe out the clones that result

from a BulkClone operation. The clones likely represent a snapshot or fork of a file system.

These file system copies must be periodically re-claimed to recover storage capacity and

portions of the object identifier namespace.

There are a few pathological cases of the use of BulkDelete and its interaction with

BulkClone. The first case is that of thrashing the namespace: making a clone and then

immediately deleting its source range. The second case is that of pass-through clones where

un-instantiated clones, bracketed by deletes, require special handling. The algorithm that

handles pass-through clones has already been presented, in Section 5.3.2 on page 66.

Sequential use of two object identifier ranges for BulkClone source and destination is

possible with intervening BulkDelete operations. This use of the namespace is possible

because BulkDelete can clear out a previous source range so that it can be re-used as a des-

tination range while a previous destination range is used as a source range. As an example,

consider the following sequence of bulk operations where each capital letter represents a

range of objects; initially range A has objects in it and range B does not.

BulkClone(A, B) Populate range B with cloned objects from range A.

BulkDelete(A) Delete all objects in range A; only range B has objects.

BulkClone(B, A) Populate range A with cloned objects from range B.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 63

BulkDelete(B) Delete all objects in range B; only range A has objects.

At the end of this sequence, assuming that no other operations triggered bulk operation

instantiation, range A has the same namespace contents as it started out with. Objects

exist in range A; range B is empty. The metadata server is tracking the bulk operations

even though they have no overall effect (other than making all objects now in range A

have identical sequence numbers recording their logical time of creation). Therefore, at

the next access to the objects, instantiation will be required to clear out the bulk operation

table. Depending on how often this series of operations is performed, a great many bulk

operation table entries will be visited to decipher the current state of the storage system.

Pass-through clones

The storage system must be able to handle the case where a BulkClone destination range

has a preceding BulkDelete that clears out the range and a subsequent BulkDelete that does

the same. It is valid for there to be other BulkClones with source ranges that were executed

between the initial BulkClone and the second BulkDelete. This situation is shown in the

following series of bulk operations where there are initially objects in ranges A and B.

BulkDelete(B) Remove the initial objects from range B.

BulkClone(A, B) Populate range B.

BulkClone(B, C) Clone into range C.

BulkDelete(B) Clear objects from range B.

At the end of this series of operations, objects in range C are clones of the objects in range

A. When an instantiation is next triggered in range B, a clone will have to be instantiated

from an object in range A to range C. Additionally, as the metadata server searches for

the metadata necessary to instantiate an object in range C, it must pass-through the deleted

range B to get to range A: this is another complication that the algorithms handle. Please

see Section 5.3.2 on page 66 for information on the low-level procedure that implements

this logic.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 64

One can also imagine more tortuous combinations of BulkClones and BulkDeletes that

cycle over the same ranges of the object identifier namespace. For instance, namespace

thrashing could be occurring along with pass-through clones. The metadata server’s algo-

rithms must be able to handle these situations correctly as the behavior of a client cannot

be predicted and general bulk operations are available to them.

5.3 Core algorithms

The algorithms described in this section are used internally by the metadata server as it

processes client requests.

5.3.1 GetMDOID

The GetMDOID function is used in the process of retrieving metadata for an uninstantiated

clone. Given an object identifier, the function looks through the bulk operation tables until

it finds the instantiated object identifier that has associated metadata describing what should

be the contents of the argument object identifier.

The GetMDOID function takes two arguments, a target object identifier and a sequence

number. The ultimate ancestor object identifier of the target object identifier is the object

which holds metadata describing the data that the target object identifier holds. Given a

simple case of an object, A, that is created, written and then cloned, the ancestor object for

A is itself. If the clone of object A is A′, then the ancestor object of A′ is A since the contents

of the two objects are the same by virtue of the clone.

The GetMDOID function returns the object identifier of the entry in the Object table that

is the ancestor of the target object identifier supplied as an argument. A second argument,

a sequence number that acts as a horizon at which point searching through the metadata

server’s tables stops, limits the scope of database table searches. This function looks back

along a chain of clones and returns the ultimate ancestor object of its argument, or indicates

that no such object exists.

The tortuous logic of the function can return any of three values. First, it may return

“impossible” when the system cannot (or should not) have reached the state where the

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 65

search was conducted. Such a result represents a serious error that is noted in log files.

Second, it may return “no metadata object” when there is no metadata object for the sup-

plied target object identifier. Third, it may return an object identifier corresponding to an

entry in the Object table from which metadata (if any) can be found for the target object.

The function first performs three queries, each of which may or may not return a valid

row of data. One query returns a row resulting from a search of the Object table for the

target object identifier. The returned row is the target object identifier if it has already been

instantiated or otherwise created, and detectable NULL value otherwise. A second query

returns the most recent BulkDelete table entry that covers the target and has a sequence

number less than or equal to the search horizon. This result might later be interpreted to

show that there is no ancestor object for the given target object identifier. The third query

returns the most recent BulkClone table entry with a destination range that covers the target

and has a sequence number less than or equal to the search horizon. This result might be

used to recurse the GetMDOID function and search for a more distant ancestor of the target

object identifier.

The first cases checked among the results of the three queries are those where all three

return valid data. If the BulkDelete entry’s sequence number is between3 the sequence

numbers for the Object entry and the BulkClone entry, then a recursive call is made to Get-

MDOID with arguments of the Object entry translated into the source range of the Bulk-

Clone entry, and a horizon being the BulkClone entry’s sequence number. The return value

of the recursive call is returned. If the BulkClone entry’s sequence number is between the

sequence numbers of the Object entry and the BulkDelete entry, then “no metadata object”

is returned. If the Object entry’s sequence number is between those of the BulkDelete and

BulkClone entries, then “impossible” is returned. If the Object entry’s sequence number

is between those of the BulkClone and BulkDelete entries, then “no metadata object” is

returned. If the BulkClone entry’s sequence number is between the BulkDelete and object

sequence numbers, then “impossible” is returned. If the BulkDelete entry’s sequence num-

ber is between the BulkClone and object sequence numbers, then “impossible” is returned.

3This “between” relation is the SQL BETWEEN relation where “X BETWEEN Y AND Z” translates to

“X >= Y and X <= Z”.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 66

If the Object and BulkDelete entries exist, but the BulkClone entry does not then

there are two cases to handle. If the Object entry’s sequence number is greater than the

BulkDelete entry’s, then return “impossible”. Otherwise, “no metadata object” is returned.

If the Object and BulkClone entries exist, but the BulkDelete entry does not exist, then

“impossible” is returned.

If the Object entry exists, and the BulkDelete and Bulk clone entries do not exist, then

the object identifier for the Object entry is returned. This is the ultimate ancestor at the end

of the original search.

If the Object entry does not exist and the BulkDelete and BulkClone entries do exist,

then there are two cases to handle. If the BulkDelete entry’s sequence number is greater

than that of the BulkClone entry, then “no metadata object” is returned. Otherwise, a

recursive call is made to GetMDOID with arguments of the Object entry translated into the

source range of the BulkClone entry, and a horizon being the BulkClone entry’s sequence

number. The return value of the recursive call is returned.

If the Object entry and BulkClone entries do not exist, but the BulkDelete entry does

exist, then “no metadata object” is returned.

If the Object entry and BulkDelete entries do not exist, but the BulkClone entry does

exist, then a recursive call is made to GetMDOID with arguments of the Object entry

translated into the source range of the BulkClone entry, and a horizon being the BulkClone

entry’s sequence number. The return value of the recursive call is returned.

If all three entries are found to be empty, then a result of “no metadata object” is re-

turned.

5.3.2 InstantiatePassThroughLimits

The InstantiatePassThroughLimits function instantiates clones for its target object between

the logical clock sequence numbers provided as arguments (a lower and an upper bound).

The intended use is that clones of the target object are instantiated between BulkDeletes

whose sequence numbers are provided as arguments to the function4. A description of

4Similar to the unimplemented alternative instantiation idea for chains-of-clones, in this situation we could

re-write the entries in the BulkClone table for subsequent clones instead of instantiating them.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 67

the situation in which this algorithm is applied can be found in Section 5.2.2 on page 63.

An example situation which this function was design to handle is shown in Figure 5.3 on

page 67.

Object Identifier Namespace

B

B’

A

C

Create, Write

BulkDelete

BulkClone

BulkClone

BulkDelete

Create

ti
m

e

Read

Figure 5.3: Pass-through clone example

Instantiation of the clone from object A to object C is done when object B’ is created.

Creating object B’ empties that portion of the object identifier namespace, forcing the

instantiation according to our implemented algorithms.

The first step of this function searches for a BulkClone table entry (there can be only

one) with a destination range that contains the target object and has sequence number be-

tween the lower and upper bounds provided to the function. This is the “destination clone”.

If there is no such BulkClone table entry, then processing continues by splitting any other

BulkClone entries with source ranges containing the target object and with sequence num-

bers between the lower and upper bounds. After these splits are performed, the function

can return successfully.

If there is a destination clone, then additional searches are performed. A set of “source

clones” are sought which have source ranges that contain the target object and sequence

numbers between the lower bound and the destination clone. Each of these clones are split

and re-inserted into the BulkClone table.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 68

Next, a metadata object for the target object is sought through the GetMDOID function.

If no metadata object is found, then there is no object from which to make a pass-through

clone (from the destination clone through to any source clones). A search is made for Bulk-

Clone table entries that contain the target object in their source ranges and have sequence

numbers between the destination clone and the upper bound. These entries are split and

re-inserted into the BulkClone table. Then, the destination clone is split and we return

successfully from the function.

If a metadata object is found, then clones are instantiated that contain the target object

in their source range and have sequence numbers between the destination clone and the

upper bound. Instantiation involves first translating the target object into the destination

range of the clone. Then, the translated object is inserted into the Object table. The clone

is instantiated at storage nodes. The metadata object’s metadata extents are copied and

inserted into the MetadataExtent table for the translated object. Then, the clone is split and

re-inserted into the BulkClone table. Finally, the destination clone is split and re-inserted,

and the function can return successfully.

5.3.3 InstantiateHole

The InstantiateHole function is used internally to create a hole in the object identifier

namespace. The function is called with a single object identifier as its argument. A vari-

ant function adds a sequence number as an argument and does not process operations

with sequence numbers greater than that. It is most commonly used when instantiating

BulkDeletes to remove all bulk operation dependencies on a particular object identifier. It

can create child clones to break chains of clones and initiate BulkDelete instantiation. Af-

ter calling InstantiateHole the object identifier namespace has no entry for the target object

identifier.

Consider the use case in Figure 5.4 on page 69. We show the situation in the object

identifier namespace in an initial condition in the top half of the figure. The bottom half

of the figure represents the namespace after the InstantiateHole function has performed its

job of clearing out an object identifier entry. It has split BulkDelete and BulkClone table

entries after instantiating those operation on the necessary objects.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 69

Object Identifier Namespace

BACreate, Write

BulkDelete

BulkClone

BulkClone

BulkDelete

ti
m

e

ACreate, Write

BulkDelete

BulkClone

BulkClone

ti
m

e

C

BulkDelete

Create, Write

Figure 5.4: Use case for InstantiateHole function

The top half of the figure represents the state of the object identifier namespace before a

call is made to InstantiateHole(B). The bottom half shows the situation after the call.

Note the delete of object B, the creation of object C with the timestamp of the BulkClone

from which it was instantiated, and the splitting of the bulk operation representations.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 70

If a BulkClone table entry with destination range containing the target object is found

between the limits, then the logic splits around that BulkClone entry’s sequence number.

Other BulkClone entries that have source ranges covering the target object and occurred

between the lower bound sequence number and the BulkClone with the destination range

are simply split and re-inserted. BulkClone table entries that happened after the destina-

tion clone and before the upper limit are instantiated. For each instantiation, a metadata

object is searched for through the use of the GetMDOID function. If there is no source

metadata object is found, then the remaining BulkClone entries are simply split and we

return successfully from the function. If there is a source metadata object, then clones are

instantiated. First, the target object is translated into the destination range of the Bulk-

Clone. Second, the destination object is inserted into the Object table. Third, the clone

is instantiated at storage nodes. Fourth, metadata extents are copied and inserted into the

MetadataExtent Table for the destination object. Fifth, the BulkClone being instantiated

has its entry in the BulkClone table split and re-inserted. Sixth, the destination BulkClone

from which the pass-through clones were made is split and re-inserted into the BulkClone

table.

The InstantiateHole function starts out by getting the entry from the Object table for

the target object. From there, one of two paths is taken, depending on whether the search

of the Object table was successful.

If the target object is found in the Object table, the earliest BulkDelete that covers it

is searched for. If a BulkDelete is found, then, for each BulkClone that has the target

object in its source range and that has a sequence number less than that of the earliest

BulkDelete (i.e., the BulkClone happened before the earliest BulkDelete), a series of steps

are taken. First, the target object identifier is translated into the destination range of the

BulkClone. Second, a call is made to instantiate a hole at that translated object identifier but

only concerned with events that happened before the BulkClone currently being processed.

Third, the translated object is inserted into the Object table. Fourth, the metadata extents for

the target object are copied to the translated object. Fifth, the BulkClone being processed is

removed from the BulkClone table, split around the target object identifier, and re-inserted.

Sixth, the clone of the translated object is instantiated. After this BulkClone operation

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 71

processing, attention turns to that first BulkDelete. Seventh, the target object is deleted

from the object table, as part of creating a “hole” in the object identifier namespace. The

delete of the target object is instantiated. And, finally, the entries for the target object are

removed from the MetadataExtent table5.

If no first BulkDelete was found, then processing of the BulkClones still has to happen.

This proceeds exactly as outlined in the previous paragraph. Then, the target object is

removed from the system as was also described above. The function can return successfully

at this point.

If processing falls through the above conditions, then any remaining BulkDelete ta-

ble entries that apply to the target object are processed in order from oldest to most re-

cent. For each of these BulkDelete entries, the subsequent BulkDelete (if any) is found.

Any pass-through clones between the BulkDeletes are processed with a call to Instan-

tiatePassThroughLimits on the target object with limits of the two BulkDelete sequence

numbers (the BulkDelete being processed and the subsequent one). If there is no subse-

quent BulkDelete to bracket a possible pass-through clone, then the next logical timestamp

is used for the upper limit of the call to InstantiatePassThroughLimits. The BulkDelete

entry being processed is then split around the target object before the next one is processed.

If the target object of this call to InstantiateHole is not in the Object table, then process-

ing proceeds similarly to the above outlined procedure. However, the necessary searches

for pass-through clones make calls to InstantiatePassThroughLimits with a lower limit of

1, being the earliest logical timestamp.

5.3.4 Divorce

The Divorce function instantiates bulk operations on objects that exist. There is a single

argument to the function: the object that should be divorced from any associated bulk

operations. At the end of execution, the target object is no longer associated with any bulk

operations.

5They are removed after instantiation of a delete since the delete needs to know which storage nodes to

contact, and that information is in the metadata extents.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 72

The Divorce function starts by calling GetMDOID for its target object. There are two

cases to investigate: either the metadata object is the same as the target object, or it is not.

If the metadata object is the same as the target object, then the first step is to retrieve

the object’s information from the Object table. Then, child clones are instantiated for

each BulkClone table entry where the target object is in the source range and the sequence

number of the BulkClone is greater than that of the target object.

These clone instantiations are done in a series of steps. First, the target object is trans-

lated into the destination range. Second, the InstantiateHole function is called for that

translated object identifier. Third, the translated object is entered into the Object table with

the length of the target object and the sequence number of the BulkClone entry from which

the instantiation is being performed. Fourth, the clone is then instantiated at storage nodes

and the metadata extents are copied from the target object to the translated object.

If the metadata object is different from the target object, then the target object is simply

instantiated. This process uses the steps outlined in the previous paragraph but uses the

metadata object identifier in place of the target object identifier. The call to InstantiateHole

takes care of making any necessary child clones of the target object.

5.4 Core operations

This section describes the algorithms behind the core metadata server operations that can

trigger on-demand bulk operation instantiation. A Create operation can trigger a BulkDelete

instantiation. A Delete operation can trigger a BulkClone instantiation. A Lookup op-

eration can trigger a BulkClone instantiation. An Enumerate operation must be able to

navigate the bulk operation tracking tables to determine which objects exist.

Any time an operation tests to determine if an object exists, it invokes portions of the

Enumerate operation and must consult the bulk operation tracking tables. Whenever an

operation requires access to the metadata for an object, logic of the Lookup operation is

used. Instantiation of BulkDelete operations can ensure that the namespace is empty and

the system purged of backing store for an object when a new object is being created. Such

instantiations take place whenever a Create operation is invoked with the name of an object

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 73

affected by a BulkDelete. Instantiation of a BulkClone operation ensures that a source

object and destination object can evolve independently. Whenever a client attempts to

access a source or destination object of a BulkClone, instantiation must take place.

5.4.1 Enumerate

The Enumerate command allows for the (iterative) retrieval of the contents of the object

namespace. It supports retrieval of up to 100 object identifiers at a time. A min and max

parameter are supplied as arguments along with a count of objects to return.

To check for the existence of an object, multiple pieces of information must be brought

together. At first glance, one might expect that if an object is mentioned in the object table,

then it exists. But, it might be covered by an entry in the BulkDelete table and so not exist.

Similarly, even if an object is not mentioned in the object table, it might actually exist due

to a chain of clones that can be tracked back to another object in the object table. And, for

that chain of clones to be complete, it cannot have any intervening BulkDelete operations

that cut the chain.

A recursively called SQL statement merges the information described above to produce

the results needed to satisfy an Enumerate operation. For the target range of the Enumer-

ate, all objects in the Object table that are within the range, except those covered by a

BulkDelete, are placed into the set of object identifiers to return. That set is merged with

cloned objects that have a destination within the target range. To pull in the cloned ob-

jects, the entries of the BulkClone table with destination ranges overlapping the target are

involved.

Each of the overlapping clone destinations is first trimmed to match the enumeration

range. Then, objects in the source range of each clone within the enumeration range are

picked from the Object table, unless the source or destination range of the clone is covered

by a BulkDelete. These objects pulled from the clone’s source range are recursively merged

using a UNION construct with objects pulled from the source range of the clone.

The set of objects pulled forward into the enumeration range are then checked against

any BulkDeletes that might affect them. This check must be made since BulkDeletes might

cover objects pulled in.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 74

5.4.2 Create

The Create command causes a target object’s object identifier to appear in the namespace.

Just after a Create, there is no backing-store for the byte-addressable contents of the object.

Only a single object can be created with each Create command, and a command fails if the

object already exists.

A Create operation can trigger an on-demand instantiation of a BulkDelete. Since iden-

tifiers can be re-used, this situation must be handled. When re-creating an object, the Create

will fail if the delete on the object cannot be instantiated.

Before a Create can proceed, the object identifier being created must not exist. When

processing a Create, the first step is to Enumerate the target object. If it already exists, then

the operation fails. If the enumeration returns that it does not exist, then a “hole” must

be created that will create any necessary clones of the previously deleted object and then

instantiate the delete.

5.4.3 Lookup

The Lookup command returns metadata and capabilities for a byte-range of an object. The

object must already exist, but there may or may not be metadata for the requested byte

range.

While processing a Lookup, the metadata server first performs an enumeration to verify

that the target object exists. If the object exists but is not explicitly mentioned in the Object

table, then the existence was caused by a BulkClone operation. To create an independent

object, the target object is “divorced” from its parent and any child objects. This divorce

also happens if the object does not exist because of a clone, in order to allow any child

clones to evolve independently of their parent.

After the object has been freed of its parent and all children, metadata for the requested

byte range is returned.

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 75

5.5 Correctness

This section informally argues the correctness of our design in the face of failures. Com-

ponents can fail, and messages can be lost, and the bulk operation semantics are obeyed.

The behavior expected of bulk operations are as follows. They are atomic; either they

are applied to all relevant objects or none of the objects are affected. All clients observe

the same state of the objects affected by bulk operations. Instantiation of a bulk operation

follows the execution of that bulk operation and delayed instantiation must be indistinguish-

able from an apparent immediate instantiation. A BulkClone operation makes copies of all

objects in the source range into the destination range. A BulkDelete operation removes the

affected objects from the object identifier namespace.

There are two parts to bulk operation processing. First is the initial processing of the

bulk operation by the metadata server. Second is the instantiation of the bulk operation

upon affected objects. The consequences of failure at each stage in these two protocol

exchanges are outlined in the following sections.

5.5.1 Initial bulk operation processing

The initial processing of a bulk operation involves just two steps. First, the bulk operation

command is sent by the client to the metadata server. Second, the metadata server revokes

capabilities by contacting storage nodes. These steps are shown in Figure 5.5 on page 76.

The protocol involves a client, metadata server, and at least one storage node. Errors can

occur during communication or within any of the protocol participants.

Case: Metadata server does not receive client command

Bulk operations are initiated by clients that send a bulk operation command to the metadata

server. If a network failure causes a client’s bulk operation command to not make it to the

metadata server, then no bulk operation will be executed. A client will receive an error

message from its own networking stack indicating that the message was not sent. The

client can observe the status of the system by using the Enumerate command to verify that

the bulk operation did not occur. For a BulkClone, an enumeration of the destination range

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 76

client metadata server storage node

BulkOP()

Revoke()

success

success

Figure 5.5: Initial bulk operation processing

should return empty. For a BulkDelete, an enumeration of the target range will return some

objects if it was not already empty.

Case: Internal metadata server error

Should the metadata server crash before it can complete the processing of a bulk operation,

the client will not receive a completion notification. Because the database uses transactions

to update its tables, the bulk operation table updates will either be completed fully, or not

at all. The client can use Enumerate to determine whether or not the operation completed

and, if not, retry the operation.

While a metadata server is down, clients will still be able to use cached capabilities (if

they have not been revoked) to read and write data at storage nodes. They will not be able

to execute a FinishWrite operation or create or delete objects.

Case: Capabilities not revoked

To complete a bulk operation, the metadata server must be able to revoke capabilities for

affected objects. If a communication error between the metadata server and storage nodes

prevents this from happening, then the bulk operation will be aborted and the client in-

formed of failure.

If some storage nodes can be contacted to perform revocation, but others cannot, then

the success of the operation is dependent on the data encoding threshold of the affected

objects. If enough storage nodes can be contacted to ensure that no client can successfully

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 77

read or write data, then the bulk operation can succeed. If enough storage nodes do not

respond to capability revocation, then the bulk operation will fail. Clients can recover after

some storage nodes reject their cached capabilities by re-contacting the metadata server to

acquire fresh capabilities.

Case: Client never receives “success” from MDS

If the client that initiated a bulk operation never receives a “success” message back from

the metadata server, there are a number of things that could have gone wrong (as mentioned

above). The client can determine if the bulk operation succeeded by using the Enumerate

operation in the manner previously described.

5.5.2 Bulk operation instantiation

The instantiation of a bulk operation is triggered by a command sent by a client to the

metadata server. As examples, a Lookup command can trigger BulkClone instantiation,

and a Create command can trigger a BulkDelete instantiation. In each case, the metadata

server must instantiate the bulk operation at the storage nodes before returning a “success”

code to the client. The steps for generic bulk operation instantiation are shown in Figure 5.6

on page 77. The protocol involves a client, metadata server, and at least one storage node.

Errors can occur during communication or within any of the protocol participants.

client metadata server storage node

Instantiation trigger

Instantiate()

success

success

Figure 5.6: Instantiation of a bulk operation

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 78

Case: Metadata server internal error

If the metadata server fails after receiving the operation that should trigger instantiation, but

before performing the instantiation, then the client will not be able to perform the requested

operation. At this point, there are no valid capabilities for affected objects so bulk operation

semantics will be preserved.

The client can retry the triggering operation after the metadata server recovers.

Case: Unsuccessful instantiation

If the metadata server cannot successfully instantiate the bulk operation at the storage

nodes, then the client’s access cannot be allowed to proceed. A successful instantiation

involves contacting enough storage nodes, based on the encoding of the data distributions

used in the target object. Internal errors at storage nodes or communication difficulties

between the metadata server and storage nodes can thwart instantiation.

Partial instantiation can be tolerated. A partial instantiation of a clone can be resolved

by deleting the destination objects. A partial delete can be resolved by completing the

delete at a later time. Client access, however, must continue to be restricted until an instan-

tiation is completed. This might appear to be a slight confusion in the semantics of bulk

operations: the instantiation was promised to have been made visible to clients at execution

time, but now access can be denied. However, if one assumes that storage nodes are as

available to clients as they are to the metadata server, then, if the metadata server cannot

get to them, neither can the clients. This makes the denial of access by the metadata server

moot, since the client would not be able to access the object anyway.

Case: Client does not receive response

A client might not receive a response from the metadata server if the metadata server fails,

or if the client fails. The client does not know whether or not the instantiation completed

and can judge that by the return code of a re-tried operation.

Upon re-try, the client will observe different return codes based on the completion of

the instantiation. If a BulkClone was instantiated or not, the re-tried triggering operation

CHAPTER 5. DATA STRUCTURES AND ALGORITHMS 79

should succeed. If a Create command triggered the instantiation of a BulkDelete, then if

the Create was successful, it will fail when re-tried since the object already exists. If that

initial create failed, then the re-tried Create can succeed after the instantiation is performed.

(If it was simply and RPC interruption, then an RPC replay cache could return the expected

result to the client.)

Chapter 6

Evaluation

The evaluation of bulk operations demonstrates three points. First, the bulk operation im-

plementation described in this dissertation comes at a cost, which is quantified. Second,

background instantiation of bulk operations can be used to reduce that cost. Third, they can

be practically used while providing access to clients of the storage system.

The costs of bulk operations are measured using differences in experiment execution

times. The storage system implementation includes switches for disabling bulk operation

routines. The cost of bulk operations can thus be measured as the difference in execution

time for an experiment with, and without, bulk operations enabled. These timings are be

built up to an understanding of where time is spent during the servicing of bulk operations.

The effect of the background instantiation algorithms are measured by experiment ex-

ecution times. By running an experiment with, and without, background instantiations

being performed, the savings of running those algorithms are calculated. The costs are

eliminated, of course, if a system remains idle for long enough. When background bulk

operation instantiations compete with foreground workloads and on-demand instantiation,

the benefits will be reduced.

Demonstrating the practicality of bulk operations is done using an NFS server. The

files and directories of the NFS server are stored within the distributed object-based stor-

age system. Standard NFS clients access data through the NFS server. The NFS server

uses BulkClone operations to generate snapshots of the file system. The effects of those

80

CHAPTER 6. EVALUATION 81

snapshots on client access are measured.

This chapter ends with a short summary of the experimental results.

6.1 Experimental setup

Experiments are run across a set of identical machines. Each is a rack-mount server with

a pair of Intel Xeon processors running at 3.0 GHz with 2 GB of RAM. The systems are

connected via a switched 1 Gb/s Ethernet network. All experiments are run in-memory so

the hard disks should not affect the outcome of experiments.

The software used is as follows. The operating system is Debian Linux with a version

2.6.16 kernel and swapping disabled. The metadata server uses PostgreSQL 8.1 configured

with fsync of the write-ahead log turned off.A version of the Ursa Minor storage system [1]

is used as the distributed, object-based storage system. The storage system is run only under

fault-free circumstances.

The launching of experiments and various software components of the distributed,

object-based storage system is controlled by a single process. Actions on separate ma-

chines are coordinated via a set of ssh control connections that spawn and monitor local

processes. Once the storage system has been started, any experiments can be run against it.

The storage system is restarted cleanly between experiments, unless otherwise noted.

6.1.1 Data collection and instrumentation

The time required to execute an operation is measured as the difference between a starting

and an ending time for a function call. Various functions measured are “wrapped” by a

pass-through function that starts a timer, calls the function, stops a timer, and records the

difference between the stop and start in a data structure. Other functions are explicitly

annotated for timing. A trigger dumps the data structure at the end of a run. By saving

the data in-memory and writing it later, minimal overhead is introduced into the running

program. Post-processing is used to extract statistics and generate graphs of the time-series

data.

CHAPTER 6. EVALUATION 82

Averages and standard deviations of experimental results are presented in the text and

tables of this chapter. Additional statistical summaries of the results can be found in the

Appendix, which starts on page 156.

6.1.2 Workload scripting

A scripting program is used to generate the necessary function calls in the experiments

making “raw” calls to client library functions. The scripting program takes no longer to

execute than a custom C/C++ program to execute the same calls. During execution, the

scripting program stores information about storage system objects that have been created

and written so that it can know what objects remain to be created, can be deleted, and

can be read. The timing of each operation invocation is recorded, including both the time

since the start of the script at which the operation was issued and the duration of execution.

BulkClone operations can, of course, create objects and BulkDelete operations can delete

them.

The script files optionally specify a random seed number used with a random number

generator and otherwise contain a number of stanzas describing workloads. The description

of a workload has six components: a capability revocation schedule, an object identifier

generator, an access generator, a termination condition, a set of operations, and a data

distribution.

Revocation schedule The revocation schedule will revoke capabilities every so many

seconds during the execution of the current workload. It is used to study the effects of

capability revocation on client accesses. This particular revocation function is especially

made available for use by this scripting program; it is not available to clients and is used

internally by the metadata server. In order to perform revocation, the function uses cached

information about the storage nodes in the system and contacts them directly to revoke

capabilities for all object identifiers covered by the object generator.

Object generator The object generator operates over a range of objects, specified by

starting and ending object identifiers. Within that range of objects, the object generator

CHAPTER 6. EVALUATION 83

processes the object identifiers sequentially or randomly as specified. When an operation

is executed, it requests an object identifier from the object generator to use as an argument.

Access generator The access generator operates similarly to the object generator. Given

starting and ending bytes and an access size, the access generator selects either sequential

or random addresses for requests. It is used by read and write operations to pick bytes as

the target of input or output.

Termination condition A termination condition exits the current workload stanza when

one of three conditions is met. Only one condition can be specified for each stanza. Termi-

nation can occur when a particular number of operations have been issued. This is useful

when creating, writing, and reading particular objects as there can be three workload stan-

zas, each terminating after executing 1000 operations, thus creating 1000 objects, writing

them and then reading them. Termination can occur when a certain number of bytes has

been accessed. This allows a workload stanza to conclude after reading and/or writing

a certain amount of data. Termination can occur when a certain number of seconds has

passed. This allows for experiments limited by time.

Operations The operations are specified by name and a fraction of the whole workload

that their execution should comprise. The operations are Create, Delete, Read, Write,

BulkDelete, BulkClone, and Sleep. The BulkClone operation has additional parameters:

a probability for performing a chain-of-clones and a probability of changing the object

generator range to the source range of a random clone along a chain-of-clones. The Sleep

operation has a parameter of how many seconds to sleep and allows for slack time during

which the metadata server can perform background instantiations.

Data distribution description A workload stanza contains a data distribution descrip-

tion. This includes, among other things, the threshold parameters for m−o f −n encodings

and a block size (that can be different from the access generator block size). The storage

nodes available for use are obtained from the storage system.

CHAPTER 6. EVALUATION 84

The workload scripting program records timing information for each operation invoca-

tion, including the time since the start of the script at which the operation was issued and

the duration of execution. Since a workload can execute an operation in different circum-

stances, the timings of an individual operation can vary widely. Consider, for instance, the

case of workload stanzas that create and write to 1000 objects, followed by a BulkDelete

of those 1000 objects, and finally re-creates those 1000 objects. The timing of the first

1000 creates would be expected to be faster than the second 1000, which must instantiate

a delete. In this example, the average and median execution times, the minimum and max-

imum execution times, and the distribution of the data points are of interest. The average

and median provide expected operation durations. The minimum and maximum give a

sense for the best and worst case execution. The distribution of data points allows one to

interpret any skew away from the mean and median.

6.2 Baseline behavior

The baseline experiments determine expected values for operation execution. This infor-

mation provides context for the costs associated with the use of bulk operations in the

prototype storage system.

This section contains four categories of experiments. The database access experiment

establishes the minimum cost of performing an operation at the metadata server. The capa-

bilities experiments establish timings for various aspects of capability generation and revo-

cation. The Create baseline experiments expose the overheads of bulk operation algorithms.

The Write and Read baseline experiments measure other overheads of bulk operations and

show the effects of cached capabilities and metadata.

6.2.1 Database access experiment

The implementation of a metadata server in a PostgreSQL database was undertaken with

full knowledge that it would not perform as well as a custom solution. There are remote

procedure call (RPC) overheads associated with calling from C/C++ code, executing the

CHAPTER 6. EVALUATION 85

standardized “embedded SQL in C” interface, and invoking the database where server-side

functions execute the operation logic and query various tables. These overheads are a basic

part of every interaction with the back-end of the metadata server.

To measure this cost, a custom “ping” function was implemented along the execution

path of back-end metadata server operations. The function is installed into the database

just like other back-end functions, makes no calls of SQL operations, and simply returns

immediately (i.e., BEGIN RETURN(0); END;). From the client library, this ping function is

invoked, and the execution time is measured.

The experimental setup involves two computers. One is the client issuing the calls to

the ping function. The other is the metadata server, with a local instance of PostgreSQL

running the entire metadata server (front-end, back-end, and helper). The results of re-

peated invocations of the ping function are shown in Table A.1 on page 157. We see that

any access to the database at the back-end of the metadata server takes 5.1 ms on average.

6.2.2 Capability experiments

The capability system is key to our bulk operation algorithms. All bulk operations revoke

capabilities to force clients to contact the metadata server, at which point on-demand in-

stantiation takes place.

There are three aspects of capabilities exercised experimentally here. The first is the

time it takes to generate a capability. The second is the time needed to acquire a list of all

storage nodes in the system, a necessary part of a successful large-scale capability revoca-

tion. The third is the actual revocation time observed at the metadata server as it contacts

storage nodes.

The metadata server generates capabilities with a short sequence of C code. This C code

is invoked by a pl/pgsql server-side function in normal operation and in our experiment.

The experiment runs in the PostgreSQL database and simply calls the capability generation

function 100,000 times and returns the total execution time. We divide this total execution

time by the number of operations performed to find that the average time necessary to

generate a capability is 62.5 µs. As this is orders of magnitude faster than other operations,

CHAPTER 6. EVALUATION 86

we will not consider it as contributing to the overall execution of bulk operation related

processing in the future.

In order to revoke capabilities at storage nodes, the metadata service must first have a

means of contacting those storage nodes. This must be done every time the set of storage

nodes changes1. The acquisition of a list of storage node addresses queries an internal inter-

face within the prototype storage system. This interface communicates with an in-memory

database of all registered “components” in the storage system where each component rep-

resents a contactable entity (e.g., program) that provides some service. Storage nodes are

such entities, as is the metadata service. In this experiment, there are two storage nodes

that are enumerated. The information returned enables the metadata service to contact the

storage nodes through a communication interface and instruct them to revoke capabilities.

There are only two computers taking part in this experiment. One holds the storage

system component addressing information The other queries that information to retrieve

the list of storage nodes. There are also the two storage nodes running, but they are not

contacted during this experiment. They are only present to register their endpoints.

The average time to acquire the list of storage nodes is 1.35 ms.

Capability revocation is driven by the front-end to the metadata service. When an op-

eration is decoded, if it is a bulk operation, the front-end to the metadata service revokes

capabilities before sending the operation to the back-end PostgreSQL server-side functions

for additional processing. This experiment repeatedly calls the same revocation function

used by the front-end. The front-end informs all active storage nodes of the need to re-

voke capabilities. In this experiment, two storage nodes are active in the system. Cached

information about storage nodes in the system is used for communication addressing (ac-

quisition of a list of storage nodes is not part of this experiment).

Three computers take part in this experiment. One is the metadata server making revo-

cation calls. The other two are the storage nodes receiving and processing revocations.

The average time to revoke capabilities at two storage nodes is 1.24 ms.

1The prototype system does not contain logic for informing components of changes to the set of storage

nodes. For correctness and even though we operate in fault-free mode, we request the list of storage node

addresses every time we perform a bulk revocation of capabilities.

CHAPTER 6. EVALUATION 87

Summary

It takes about 62.5 µs to generate a capability. It takes 1.35 ms, on average, to acquire ad-

dressing information for two storage nodes.It takes 1.24 ms, on average, to revoke capabil-

ities at two storage nodes. These are basic costs associated with the capability component

of bulk operations.

6.2.3 Create

The Create operation populates the storage system with addressable objects. The algo-

rithms associated with bulk operations add overhead to the basic process of making sure

an object being created does not already exist. The purpose of these experiments is to

determine that overhead.

In these experiments, the Create command is used to create objects in a range of ob-

jects, sequentially or randomly, with or without bulk operation algorithms active. The bulk

operation code is always present in the metadata server, but a switch has been installed to

choose whether those code paths are followed. Background instantiation code is similarly

de-activated, as it is irrelevant to basic Create operations.

The Create operations are issued by a program making calls into the client library. The

library forwards the requests across the network to the metadata server. At the metadata

server, the front-end passes the operation to the back-end, where a PostgreSQL server-side

function processes the operation. Then, the operation’s result is returned to the client. We

measure the client observed time for the Create operation.

The first experiment is of Create operations called with object identifiers selected se-

quentially through a range of objects without bulk operation code active. The average time

to complete a Create operation in this case is 10.0 ms.

The second experiment is of Create operations called with object identifiers selected

randomly across a range of objects without bulk operation code active. The average time

to complete a Create operation in this case is 10.3 ms.

CHAPTER 6. EVALUATION 88

The third experiment is of Create operations called with object identifiers selected se-

quentially through a range of objects with bulk operation code active. The average time to

complete a Create operation in this case is 15.6 ms (with a standard deviation of 3.00 ms).

The fourth experiment is of Create operations called with object identifiers selected

randomly across a range of objects with bulk operation code active. The average time to

complete a Create operation in this case is 16.0 ms (with a standard deviation of 1.3 ms).

Summary

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
��� ����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

���
���
���
��� 0

 2

 4

 6

 8

 10

 12

 14

 16

W
it

h
o
u
t

B
u
lk

 O
p
s

W
it

h
 B

u
lk

 O
p
s

W
it

h
o
u
t

B
u
lk

 O
p
s

W
it

h
 B

u
lk

 O
p
s

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Create Operation Issue Strategy

Sequential Random

Figure 6.1: Create operation timing comparison

A graphical display of the comparative average timing of Create operations issued

sequentially and random both with, and without, bulk operation code active. Thus the

average overhead induced by the bulk operation algorithms is quantified at 5.6 ms for

sequential Create and 5.7 ms for random.

The chart in Figure 6.1 on page 88 summarizes the results of our Create experiments.

Without bulk operation code active, it takes about 10.0 ms to create a single object sequen-

tially. With bulk operation code active, it takes about 15.6 ms to create a single object

CHAPTER 6. EVALUATION 89

sequentially. The expected overhead for sequential create of bulk operations, is 15.6 −

10.0 = 5.6 ms, or 56.0%. Without bulk operation code active, it takes about 10.3 ms to

create a single object randomly. With bulk operation code active, it takes about 16.0 ms

to create a single object randomly. The expected overhead for random create with bulk

operations code active, is 16.0 − 10.3 = 5.7 ms, or 55.3%. As more and more objects are

added to the metadata server, it was verified (by examination of the time-series data) that

there is no increase in the time required to create an object.

6.2.4 Write

The Write operation places data into objects of the storage system. The algorithms associ-

ated with bulk operations add overhead to the basic process of making sure that an object

being written exists, checking for a need to instantiate a clone, and checking for exist-

ing metadata (or metadata that will exist upon clone instantiation). The purpose of these

experiments is to determine that overhead and point to its source.

The basic Write protocol was shown in Figure 4.7 on page 52. In this experiment,

we will measure timings of the protocol as part of a Write of 64 kB of data using an

underlying data distribution with 16 kB block sizes and a single storage node. There are

three computers involved in this experiment: the client, the metadata server, and a lone

storage node. The experimental run first creates objects sequentially in a fresh storage

system and then sequentially processes the objects again, issuing a 64 kB write to each of

them. A run is made with bulk operation code disabled. Then, a separate experiment (on a

fresh system) is made with bulk operation code enabled.

An unexpected discovery was made during these experiments. When a program calls

the client library Write function, there are actually two Lookup RPCs performed. The first

Lookup discovers that the object has not been written to and has no metadata associated

with it. The client library logic then invokes a function to choose a data distribution. That

function also calls Lookup to check for any pre-existing metadata that it could be compat-

ible with when it chooses a distribution for a neighboring and unallocated portion of the

object’s data stream. So, the protocol underlying the Write operation looks like that shown

in Figure 6.2 on page 91.

CHAPTER 6. EVALUATION 90

These experiments are designed to exercise the protocol and break out the various steps

of Lookup, ApproveWrite, SSIO Write (low-level write that transfers data), and Finish-

Write. When portions of the protocol execute with cached capabilities and metadata, tim-

ings are also presented. When capabilities are rejected by storage nodes, timings are also

measured and presented.

One could take these results for 64 kB Writes and extrapolate results to larger Write

operations. This would be done by holding constant all timings but that for the low-level

SSIO Write protocol phase. As SSIO Write is the only data transfer operation, adding time

here for multiples of 64 kB would amortize the setup costs of the other protocol components

for an overall Write.

Write without bulk operations code

Our first experiment with the Write operation provides us with a baseline for timing. The

system is setup with no bulk operations code paths active and no background instantiations

being performed. The client library Write call is used with a timing wrapper and other

functions have been annotated to report execution timing.

The experiment proceeds in two phases on the client. In the first phase, the client

program issues Create operations sequentially to a set of 1000 objects. In the second phase,

the client program issues sequential Write operations sequentially to the 1000 objects. The

Write operations are for the first 64 kB of data in the objects and the data distribution is

1-of-1 with 16 kB blocks. The Write operation goes through the protocol steps show in

Figure 6.2 on page 91.

The first component of the Write issued by the client is the Lookup operation. For

each of the 1000 Write operations, there are two Lookup operations, totaling 2000 Lookup

operations in this experiment. The first Lookup for an object is used to discover if there

is any existing metadata for the object that should be used for the Write operation. The

second Lookup is performed by the client library as it attempts to choose a data distribution

for the Write. The Lookup operations take, on average, 7.63 ms (with a standard deviation

of 1.2 ms). There is no substantial difference in timing for the two calls made in each

CHAPTER 6. EVALUATION 91

client metadata server storage node

Lookup(100, offset=0, num_bytes=64kB)

success, no metadata, no capability

Lookup(100, offset=0, num_bytes=64kB)

success, no metadata, no capability

ApproveWrite(100, data_distribution)

success, capability

SSIO_Write(capability, 100, offset=0, data)

success

FinishWrite(100, data_distribution)

success

Figure 6.2: Write protocol with allocation and extra Lookup

CHAPTER 6. EVALUATION 92

protocol interaction. These calls do extend to the back-end of the metadata server and

therefore incur the 5.1 ms cost of going to the back-end.

The second component of the Write issued by the client is the ApproveWrite operation.

The ApproveWrite conveys to the metadata server the proposed data distribution for the

overall Write operation on a particular object. The ApproveWrite operations take, on aver-

age, 11.1 ms (with a standard deviation of 1.92 ms), and since these calls do extend to the

back-end of the metadata server, they also incur the included 5.1 ms cost of going to the

back-end.

The third component of the Write issued by the client is the SSIO Write operation. This

accomplishes the low-level transfer of the data from the client to the storage node, using

metadata and capabilities from the ApproveWrite operation. The SSIO Write operation

does not involve the metadata server and, on average, it takes 6.31 ms (with a standard

deviation of 1.15 ms) to write 64 kB of data. This translates into an average data transfer

rate of 10.1 MB/s.

The fourth and final component of the Write issued by the client is the FinishWrite

operation. This makes the written data available to be read by other clients. The Finish-

Write operations take, on average, 14.7 ms (with a standard deviation of 3.85 ms). These

calls do extend through the front-end of the metadata server to the back-end for processing

by a PostgreSQL server-side function and therefore incur the 5.1 ms cost of going to the

back-end.

With bulk operation code disabled the average time to Write 64 kB of data from the

perspective of a process using the client library is 47.4 ms (with a standard deviation of

7.67 ms). This translates into an average transfer rate of 1.35 MB/s for the overall op-

eration. This is quite a bit different from the actual transfer of data performed by the

SSIO Write operation at 10.1 MB/s. So, the actual data transfer is quite quick, but the

surrounding protocol operations drags down the timing for the overall operation.

Write with bulk operations code

The second experiment is identical to the first, except that bulk operations code is active

for the operations executed. Operation timings are recorded as objects are created and then

CHAPTER 6. EVALUATION 93

written. The timing information acquired in this experiment illustrates the overhead of

bulk operations when compared against timing information from execution without bulk

operations code gathered in the previous section.

With bulk operation code enabled, the SSIO Write operations take, on average, 6.41 ms

(with a standard deviation of 0.562 ms) to write 64 kB of data. This translates into an

average data transfer rate of 9.98 MB/s.

With bulk operation code enabled, the average time to Write 64 kB of data from the

perspective of a process using the client library is 54.3 ms (with a standard deviation of

8.27 ms). This translates into an average transfer rate of 1.18 MB/s.

Table 6.1: Write() operation differences with bulk operations – Timing

for the components of a Write() operation with and without bulk operation

code active.

Operation With bulk ops (ms) Without bulk ops (ms) Difference (ms)

Write() 54.317 47.377 6.940

Approve Write() 13.652 11.052 2.600

Finish Write() 15.802 14.662 1.140

Lookup() 9.184 7.635 1.549

SSIO Write() 6.413 6.308

The results for Write with, and without, bulk operation code active are summarized in

Table 6.1 on page 93. The table shows that bulk operation algorithms increase the time

necessary to perform basic Write operations by 6.94 ms (14.6%) compared with running

the system without bulk operations. And this is just in code paths followed to exercise

the bulk operation logic as no bulk operations have been called during these experiments.

The SSIO Write code does not involve the processing of bulk operations, so the average

execution time of those operations does not significantly change and is virtually unchanged.

CHAPTER 6. EVALUATION 94

Re-Write with good cached capabilities, without bulk operations code

The third experiment exposes the importance of capabilities to performance. There is a

significant difference in the protocol steps and time necessary for a client to complete a

Write operation when cached capabilities are already held as compared to when revoked

capabilities are held. Since bulk operations revoke capabilities, this information is rel-

evant to understanding the impact of capability revocation on client accesses after bulk

operation execution. The experiment is conducted without bulk operations code enabled.

Background instantiation is irrelevant here since no bulk operations are issued.

The operations of the experiment are issued in three phases. In the first phase, the client

program issues Create operations sequentially to a set of 1000 objects. In the second phase,

the client program issues sequential Write operations sequentially to the 1000 objects. The

Write operations are for the first 64 kB of data in the objects and the data distribution is

1-of-1 with 16 kB blocks. In the third phase, the client program re-issues sequential Write

operations sequentially to the 1000 objects. This third phase is the item of interest for this

experiment.

The re-Write of the third phase of the experiment will proceed quickly since the client

has cached capabilities and metadata for the byte range to be written. There is no need to

perform the ApproveWrite and FinishWrite stages of the protocol as the byte range already

has metadata describing its data distribution. The timing for the re-Write operation is,

therefore, expected to compare favorably with the previous SSIO Write timing which had

an average execution time of 6.31 ms.

Over-writes of 64 kB of data in 16 kB blocks with no bulk operation code active and no

background instantiation takes, on average, 5.82 ms (with a standard deviation of 0.211 ms)

to re-Write data. The data compares favorably with the average timing for the SSIO Write

timing (6.31 ms) of the initial data.

Re-Write with invalid cached capabilities, without bulk operations

The previous experiment showed the effect of over-writing with valid cached capabilities.

This fourth experiment demonstrates the effect of over-writing with invalid cached capa-

CHAPTER 6. EVALUATION 95

bilities. This is the situation that a client would encounter after a bulk operation has been

executed and capabilities have been invalidated.

The experiment is very similar to the third experiment presented with one difference.

Between initial Write to the objects and the re-Write, a capability revocation message is

sent to the storage node. Therefore, the protocol operation of the re-Write will have the

client first trying the Write and being rejected because of invalid capabilities. The client

will then re-contact the metadata server and perform a Lookup to get new capabilities.

Using the new capabilities, the Write to the storage node will succeed.

In this experiment, the overall Write operation on the client averages 31.3 ms (with a

standard deviation of 6.27 ms).

The first Lookup operation performed by the client finds cached capabilities and meta-

data within the client library. This operation is quick and takes an average of 0.094 ms

(with a standard deviation of 0.027 ms).

The Lookup operation that re-acquires capabilities must travel across the network to the

metadata server. This operation also retrieves and returns stored metadata for the object.

The average time required to perform that Lookup is 19.4 ms (with a standard deviation of

6.24 ms).

The two low-level SSIO Write operations that occur for each high-level Write during

this experiment each take the same amount of time. The first instance of SSIO Write to

the storage node fails because of the use of invalid capabilities by the client. The second

attempt succeeds after the client acquires fresh capabilities. The average time to perform

each of the low-level writes (two of them per high-level write) is 5.79 ms (with a standard

deviation of 0.273 ms).

Data for Write with, and without, bulk operation code active is displayed in Figure 6.3

on page 96 and shows the 6.94 ms overhead of bulk operations code.

Client library execution of a Write operation with cached metadata and revoked capa-

bilities takes over 5 times longer (31.3 ms) than with cached metadata and valid capabilities

(5.82 ms) when bulk operations code is disabled, as shown in Figure 6.4 on page 97. This is

a penalty that will be paid by clients after the capability revocation step of a bulk operation.

CHAPTER 6. EVALUATION 96

��
��
��
��

����

��
��
��
��

��
��
��
��

����

 Lookup w/o db (x2)

 ApproveWrite w/o db

 FinishWrite w/o db

 SSIO_Write

 Database interaction (x4)

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

 0

 10

 20

 30

 40

 50

 60

Without bulk operations With bulk operations

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Figure 6.3: Write timing comparison

These are the average timings for the components of the Write operation at the client with

database interaction times pulled out (each database interaction add an average overhead

of 5.1 ms). A Write is composed of two Lookup operations, an ApproveWrite, and a

FinishWrite, and an SSIO Write. Without bulk operations, it takes 47.4 ms on average to

perform a Write of 64 kB in 16 kB blocks. With bulk operations, it takes 54.3 ms on

average. This is a difference of 6.94 ms which represents the overhead of bulk operations.

CHAPTER 6. EVALUATION 97

�
�
�
�

��

�
�
�
�

�
�
�
�

 SSIO_Write (successful)

 Lookup w/o db

 Database interaction

 SSIO_Write (failure)

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����

����
����
����

����
����
����

 0

 5

 10

 15

 20

 25

 30

 35

Good capabilities Invalid capabilities

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Figure 6.4: Re-Write timing comparison

These are the average timings for the components of the Write operation when it is

over-writing data with valid, and invalid, capabilities as observed at the client and bulk

operation code is inactive. The average database interaction time of the Lookup operation

has been pulled out (5.1 ms). An over-write of 64 kB in 16 kB blocks does not need to go

through the ApproveWrite and FinishWrite steps. With valid cached capabilities, it

proceeds quickly. With invalid cached capabilities, as would happen after capability

revocation performed in the course of a bulk operation, additional steps take place.

CHAPTER 6. EVALUATION 98

6.2.5 Read

The Read operation retrieves previously written data from objects in the storage system.

The algorithms associated with bulk operations add overhead to the basic process of making

sure that an object being read exists, checking for a need to instantiate a clone, and checking

for existing metadata (or metadata that will exist upon clone instantiation). The purpose of

these experiments is to determine that overhead and point to its source.

The protocol for a client to perform a Read of an object is as follows. A client performs

a Lookup operation to the metadata server to acquire metadata and capabilities to access

the object (assuming that the object exists), unless it has cached metadata and capabilities

for the object. The client then contacts the necessary storage nodes to retrieve data using

a low-level SSIO Read operation. If the SSIO Read request presents storage nodes with

invalid capabilities, the operation is rejected, otherwise the storage node returns the re-

quested information. If the SSIO Read is rejected because of invalid capabilities, the client

library will perform a Lookup operation and retry the SSIO Read with new metadata and

capabilities. This completes the Read operation.

To investigate the baseline behavior of the client library Read operation, we perform a

series of experiments.

The first experiment measures the time to Read 64 kB of an object in 16 kB blocks with

cached metadata and valid capabilities; bulk operations code is not active. The average

time for a Read, observable by the process invoking the client library function, is 5.9 ms

(with a standard deviation of 0.335 ms). Since there is no need for the client to interact with

the metadata service in this case, the timing is the same if bulk operation code is enabled.

To understand operation timing when a Read is performed by a client using revoked

capabilities, the prior experiment is extended. After reading the data in the objects, capa-

bilities are revoked (without activating bulk operation code), and the data is re-read with

invalid capabilities. It takes an average of 27.9 ms (with a standard deviation of 5.92 ms)

to read 64 kB in 16 kB blocks.

The protocol behind this re-reading has four steps. Average timing for operations, as

determined experimentally, are presented in parentheses as the protocol is described. First

is a quick Lookup (0.092 ms with a standard deviation of 0.021 ms) that finds cached

CHAPTER 6. EVALUATION 99

metadata and capabilities to use for the Read. Second is a call to the low-level read function,

SSIO Read (3.13 ms with a standard deviation of 0.128 ms), that attempts to read data

from the storage node but cannot because the presented capabilities are invalid; no data

is returned. This read returns quickly because it does not transport any data. Third is a

Lookup (19.5 ms with a standard deviation of 5.89 ms) to the metadata server to re-acquire

capabilities and metadata. Fourth is a SSIO Read (4.94 ms with a standard deviation of

0.141 ms) that succeeds and transmits the data from the storage node to the client.

When we activate the bulk operation code paths, the average time for a client to re-read

data while it holds cached capabilities is 32.0 ms (with a standard deviation of 6.34 ms).

The second Lookup operation takes longer with bulk operation code active. Its execu-

tion averages 23.5 ms (with a standard deviation of 6.32 ms).

Summary:

Without bulk operation code active, it takes 5.9 ms on average to perform a Read of 64 kB

with 16 kB blocks with cached capabilities and metadata. With invalid capabilities, it takes

27.9 ms on average.

Table 6.2: Re-Read() operation differences with bulk operations –

Average timing for the components of a Read() operation using invalid,

cached capabilities, with and without bulk operation code active.

Operation With bulk ops (ms) Without bulk ops (ms) Difference (ms)

Read() 32.009 27.873 4.136

Fast Lookup() 0.093 0.092 0.001

Fast SSIO Read() 3.174 3.129 0.045

Slow Lookup() 23.548 19.482 4.066

Slow SSIO Read() 4.963 4.941 0.022

A summary of the average timings for the component operations of a client performing

a Read with cached (but invalid) capabilities are shown in Table 6.2 on page 99, and in

CHAPTER 6. EVALUATION 100

��
��
��
��

����

����

��
��
��
��

 Lookup w/o db

 SSIO_Read, success

 SSIO_Read, rejected

 Database interaction (x1)

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����

����
����
����
����

 0

 5

 10

 15

 20

 25

 30

 35

Without bulk operations With bulk operations

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Figure 6.5: Read timing comparison with invalid capabilities

These are the average timings for the components of the Read operation with invalid

capabilities at the client with database interaction times (average of 5.1 ms and an

overhead of our implementation) pulled out. This arrangement of the data highlighs that

the Lookup operation contributes the most to the timing difference. The difference in

overall average execution timing is 4.14 ms which represents the overhead of bulk

operations.

Figure 6.5 on page 100, for cases with, and without, bulk operation code active. The bulk

operation code executed by the metadata server contributes an overhead of 4.14 ms. Read

timing results are summarized graphically in Figure 6.6 on page 101.

CHAPTER 6. EVALUATION 101

�
�
�
�

��

�
�
�
�

�
�
�
�

��

 SSIO_Read (projected)

 SSIO_Read (successful)

 Lookup w/o db

 Database interaction

 SSIO_Read (failure)

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���
���

����
����
����
����

���
���
���
���

����
����
����
����

���
���
���
���

����
����
����
����

���
���
���
��� ���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���
���

������������ 0

 5

 10

 15

 20

 25

 30

 35

N
o
 b

u
lk

 o
p
 c

o
d
e

W
it

h
 b

u
lk

 o
p
 c

o
d
e

N
o
 b

u
lk

 o
p
 c

o
d
e

W
it

h
 b

u
lk

 o
p
 c

o
d
e

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Good capabilities Invalid capabilities

Figure 6.6: Re-Read timing comparison

These are the average timings for the components of the Read operation when it is

re-reading data with valid, and invalid, capabilities as observed at the client. The average

database interaction time of the Lookup operation has been pulled out (5.1 ms).

CHAPTER 6. EVALUATION 102

6.3 BulkDelete

The BulkDelete operation affects the object identifier namespace by removing many ob-

jects at once. Our delayed instantiation method ensures that any previous incarnation of

an object is removed from the storage system before a new instance can be successfully

created.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45

O
p
e
ra

ti
o
n
 e

x
e
c
u
ti
o
n
 t

im
e
 (

m
s
)

Time since experiment start (s)

BulkDelete
Create

Figure 6.7: BulkDelete and re-Create of pre-existing objects

To learn about the performance of BulkDelete, we first investigate its use on a single

object. An experiment is set up with a client and a metadata server on separate machines; no

storage node is directly involved. Background instantiation of bulk operations is disabled.

The client first uses Create to sequentially create a number of objects. Then, BulkDelete

is called to individually remove each object (i.e., the target range for delete covers a single

object identifier). Finally, we use Create to re-create the objects. The data points for

the BulkDelete and re-Create operation timings are shown in Figure 6.7 on page 102 and

described on the following pages.

CHAPTER 6. EVALUATION 103

The average time needed to BulkDelete a single object is 7.95 ms (starting with a few

errant points and having a standard deviation of 1.28 ms) and shows a linear dependence

on the number of objects that have been deleted. This dependence also corresponds with

the number of entries in the BulkDelete table. The average timing of Create operations on

recently deleted objects is 18.2 ms (starting with a few errant points and having a standard

deviation of 3.22 ms) and shows a linear increase with the number of objects re-created

(the number of objects in the Object table). These second calls to Create objects take longer

than those executed on an untouched storage system running bulk operation code (15.6 ms).

This result is expected, as the bulk operations algorithms induce additional work (e.g., must

consult additional tables and execute logic to make instantiation decisions).

Digging deeper into the workings of the Create operation, we break down the internal

timing. The Create operation consists of three primary subroutines. The first performs an

enumeration of the object identifier namespace to make sure that the object does not already

exist. The second subroutine ensures that a “hole” exists in the namespace by instantiating

any BulkClone and BulkDelete operations for the object being created. The third routine

inserts the record of the creation into the Object Table.

Since the back-end of the metadata server is not part of our normal tracing infrastruc-

ture, we made special measurements for this case. Messages were written to the Post-

greSQL log file with millisecond granularity. One message was output as the Create func-

tion started. Another message marked the start of the enumeration step. Following this

is a message marking the end of the enumeration step and the beginning of the “instanti-

ate hole” step. Next is a message marking the end of the “instantiate hole” step and the

beginning of the insert step. Finally comes a message marking the end of the function.

Taking the difference between the various timestamps presents us with millisecond

granularity information about the subroutines. The data points plotted in Figure 6.8 on

page 105 show the timing information for the components of the Create after individ-

ual BulkDelete of objects at the back-end of the metadata server (within the PostgreSQL

database).

The quickest of the subroutines is the insert subroutine with an average execution time

of 0.59 ms. The enumerate subroutine is the next fastest (average of 3.12 ms) and ex-

CHAPTER 6. EVALUATION 104

hibits a linear dependence on the number of objects. The bunching of data points at the

discrete millisecond marks is due to the timing resolution. The InstantiateHole subroutine

(described in Section 5.3.3 on page 68) consistently takes the longest (average of 10.70 ms

and is therefore the major contributor to the execution time of the Create operation in this

case. It also shows a linear dependence on the number of objects, and the dependence has

a steeper slope.

A closer look at the internal operations of the InstantiateHole function shows two rou-

tines contributing to the increased latency as the number of objects grows. Those routines

are searching the object table (average of 1.68 ms) and looping over BulkDelete opera-

tions (average of 1.09 ms). The contributions of these routines are shown in Figure 6.9 on

page 105. It makes sense that the searching of the object table should be dependent on the

number of objects, if the underlying database is performing a database table scan.

CHAPTER 6. EVALUATION 105

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800 900 1000

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Operation number

Enumerate
Instantiate_Hole

Insert
Enumerate average over 25 points

Instantiate_Hole average over 25 points
Insert average over 25 points

Figure 6.8: Components of Create at the Metadata Server

Sample points and averages for three components of Create at the metadata server. A few

errant initial points for “Instantiate Hole” are close to 30 ms and help explain the errant

points in Figure 6.7.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

Search of Object Table
Average over 25 samples

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000
Operation Number

O
p
e
ra

ti
o
n
 e

x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Loop over subsequent BDs
Average over 25 samples

Figure 6.9: Components of the Instantiate Hole subroutine

CHAPTER 6. EVALUATION 106

6.4 BulkClone

The BulkClone operation affects the object identifier namespace by creating copies of ex-

isting objects. Our delayed instantiation method ensures that any clones of an object are

instantiated before client access is permitted, so that accurate copies can be created.

6.4.1 Comparing chains-of-clones and prolific clones

To learn about the behavior of BulkClone, we first investigate its two anticipated modes of

employ: chains-of-clones and prolific clones. These experiments are set up with a client

and a metadata server running on separate computers. No storage nodes are involved in

these initial experiments. The sequence of events for the experiments proceeds as follows.

The client issues Create operations for 1000 objects in the object identifier namespace.

Then, the client calls BulkClone and the timing of those calls is observed. The results

provide information to use in planning how best to use the BulkClone operation.

The results indicate that prolific clones are much more sustainable than chains-of-

clones.

For prolific clones, BulkClone is called 2000 times. This results in 2 million objects be-

ing tracked at the end of the experiment. The average timing for a BulkClone was 252.0 ms

(with a standard deviation of 42.0 ms).

For chains-of-clones, BulkClone is called 25 times. Only 25 BulkClone operations

were performed for this test because the time required for each operation increased with

each call, to the point where the operation timed-out. The average timing for a BulkClone

was 1780.0 ms (with a standard deviation of 970.0 ms).

6.4.2 Access after BulkClone

To learn about the influence of BulkClone on subsequent client accesses, we Read objects

after a BulkClone operation. An experiment is set up with a client, a metadata server

and a single storage node, all on separate computers. Background instantiation of bulk

operations is disabled. The experiment has four phases. In the first phase, a set of 1000

CHAPTER 6. EVALUATION 107

source objects is created. In the second phase, 64 kB of data in 16 kB blocks is written to

the source objects. In the third phase, the objects are cloned to form a destination set with

a single BulkClone operation. In the fourth phase, one of the object sets is read and timing

reported. For one instance of the experiment, the source objects of the BulkClone are read.

For another instance, the destination objects are read.

In the case of the source objects being read, the client will attempt to use its cached

capabilities, fail in its first low-level SSIO Read because of invalid capabilities, re-acquire

capabilities with a Lookup operation, and then succeed in reading the data with a second

SSIO Read. When the destination objects are being read, the client will not have cached

capabilities and will perform a Lookup to acquire metadata and capabilities. Both situations

will trigger the instantiation of a clone. We expect that the reading of the source objects

will take slightly longer due to the attempted use of invalid capabilities and the necessary

capability re-acquisition.

Figures 6.10 and 6.11 provide time series data for the experiments. reading each source

object after cloning takes, on average, 74.3 ms (with a standard deviation of 15.7 ms).

Reading each destination object after cloning takes, on average, 73.0 ms (with a standard

deviation of 20.8 ms).

In contrast to expectations, there is not a significant difference in the averages of the

Read times, and the standard deviations are quite large (15.7 ms for reading source objects

and 20.8 ms for reading destination objects), We see that, in general, it takes longer to read

the first few cloned objects than the later ones. This points to a dependence on the size of

the BulkClone tracking table as accesses subsequent to the execution of a BulkClone are

made. This dependence is entirely contained within the Lookup operation executed as part

of the overall Read.

CHAPTER 6. EVALUATION 108

 0

 20

 40

 60

 80

 100

 120

 80 90 100 110 120 130 140 150 160 170

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Read of 64 kB in 16 kB blocks
Lookup

Figure 6.10: Read of source objects after BulkClone performing on-

demand instantiation

 0

 20

 40

 60

 80

 100

 120

 150 160 170 180 190 200 210 220 230 240 250

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Read of 64 kB in 16 kB blocks
Lookup

Figure 6.11: Read of destination objects after BulkClone performing on-

demand instantiation

A few spurious initial data points are not displayed on this graph as the y–range has been

trimmed to match that for reading source objects after BulkClone.

CHAPTER 6. EVALUATION 109

6.5 Background instantiation

This section explores background instantiation as a way to eliminate the instantiation step

from on-demand access to objects affected by bulk operations.

Various background instantiation algorithms have been implemented to choose which

bulk operation table record and which object to process. These are described in Section 4.4

starting on page 40. The following experiments evaluate and compare these algorithms

in non-competitive and competitive situations where background instantiation does not, or

does, compete with the foreground experimental workload. The experiments involve three

computers, a client, a metadata server, and a single storage node.

The first set of experiments illustrates background instantiation results when performed

entirely in the background. We show that background instantiation, in the absence of a

competing foreground workload, is “free”. This is done by executing a bulk operation

and waiting for it to be completely instantiated in the background before resuming a fore-

ground workload. The foreground workload then proceeds with execution timing similar

to when capability revocation has occurred. These experimental results are described in

Section 6.5.1 beginning on page 111.

The second set of experiments illustrates background instantiation results when lightly

competing with a foreground workload. They show that background instantiation saves

work by instantiating bulk operations before the foreground workload accesses affected

objects. There is competition between the foreground and background workloads in these

cases. The experiments consists of a foreground workload, executed after a bulk operation,

that consists of either a Create or Read operation executed in a mixed workload with some

number of Sleep operations. For example, when executing a Read operation in a 1:1 ratio

with Sleep, there are, on average, 50% Read operations and 50% Sleep operations in the

client’s workload after a BulkClone operation. If the ratio were 1:3, then 25% of the op-

erations would be Reads and the remaining 75% would be Sleep operations, on average.

These experimental results are described in Section 6.5.2 beginning on page 112.

The remainder of the experiments run have foreground workloads executing closed-

loop and directly competing with ongoing background instantiation.

CHAPTER 6. EVALUATION 110

Create objects Write objects Clone objects

Read source

objects sequentiallyeither

Read source

objects randomly

or

Figure 6.12: Experiment description for create, write, clone, and read of

objects.

The third and fourth experiments are run for each of the background instantiation selec-

tor algorithms and can be found in the subsections named after each of those algorithms.

The third set of experiments involve Read of source objects after a BulkClone with

competitive background instantiation. The BulkClone operation must be instantiated be-

fore Read is allowed to succeed. The results from these BulkClone experiments with

background instantiation may be compared to the results reported for the case where no

background instantiation is performed (see Section 6.4.2 on page 106). The experiments

proceed in four phases, illustrated in Figure 6.12 on page 110. Phase one creates 1000

objects in sequential order. Phase two sequentially writes 64 kB in 16 kB blocks to those

objects in sequential order. Phase three clones those objects with a single BulkClone oper-

ation. Phase four has two possibilities: random or sequential Read of the source object set

concurrent with background instantiation according to the algorithm being tested. We will

refer to phase four-A as reading the source object set sequentially, at least twice.2 Refer-

ence to phase four-B will be reading the source object set randomly. During phase four, the

foreground workload and the background instantiation workload compete with one another

inside the system.

The fourth experiment involves Create of objects after a BulkDelete with competitive

background instantiation. The BulkDelete operation on the objects must be instantiated

before Create is allowed to succeed. The experiments proceed in four phases, illustrated in

Figure 6.13 on page 111. Phase one creates 1000 objects in sequential order. Phase two

sequentially writes 64 kB in 16 kB blocks to those objects in sequential order. Phase three

2We read the objects at least twice, for a total of at least 2000 Read operations after the BulkClone, to

force at least half of the Read operations to execute after the BulkClone has been instantiated.

CHAPTER 6. EVALUATION 111

Create objects Write objects Delete objects

Create objects

sequentiallyeither

Create objects

randomly

or

Figure 6.13: Experiment description for create, write, delete, and read of

objects.

executes a single BulkDelete operation on those objects. Phase four has two possibilities:

random or sequential Create of the deleted object set concurrent with background instan-

tiation according to the algorithm being tested. Phase four A refers to re-creating objects

sequentially. Phase four B refers to re-creating objects randomly.

6.5.1 Non-competitive background instantiation

For our non-competitive background instantiation experiments, we allow background in-

stantiation to complete after a bulk operation before resuming access. The background

instantiation selector algorithm used is “random”, but could be any other as all have the

same eventual effect.

In the BulkDelete experiment, we Create objects, execute a single BulkDelete operation

that affects all created objects, sleep for long enough that background instantiation com-

pletes, then re-Create the objects. The second Create operation takes 16.0 ms on average

(with a standard deviation of 0.725 ms). Create with bulk operation code active (reported in

Section 6.2.3 on page 87) takes an average of 15.6 ms, putting the results of this experiment

slightly slower but within a standard deviation.

In the BulkClone experiment, we Create objects, Write to their first 64 kB in 16 kB

blocks, execute a single BulkClone operation that affects all of the objects, sleep for long

enough that background instantiation completes, then Read the objects (64 kB in 16 kB

blocks). In this experiment, the Read operation takes 36.4 ms on average (with a standard

deviation of 6.82 ms). This is within a standard deviation of the results from re-reading an

CHAPTER 6. EVALUATION 112

object with invalid capabilities and bulk operations code activated: 32.0 ms (with a standard

deviation of 6.34 ms)

6.5.2 Background instantiation with paced foreground workload

This section describes the results of experiments where a foreground workload that exe-

cutes infrequent operations interacts with bulk operations. The frequency of foreground

operations after the bulk operation is modulated by sleep operations that emulate “think-

time” of the client.

When we mix operations in a 1:1 ratio, 50% of the operations are the foreground work-

load’s operation (Create or Read) and the remaining 50% are sleep operations. The mixture

of operations is random, but controlled such that the approximate ratios of operations are

maintained. We tested with the “random” background instantiation selector algorithm,

only.

Create after BulkDelete

Our first paced workload involves Create of objects after a BulkDelete. Within a range

of 1000 objects, we sequentially issue Create operations, then use a single BulkDelete to

remove the objects, and then begin recreating the objects with Create operations intermixed

with 16 ms sleep operations. We choose 16 ms as it closely matches the timing reported in

Section 6.2.3 on page 87 for sequential Create with bulk operation code active.

The summarized results of three experimental runs are shown in Table 6.3 on page 113.

In the tabular data, we observe that the average time for performing a Create decreases as

the ratio of Sleep operations increases. This is expected since the background instantiation

can run more often as more Sleep operations occur. Thus, the background instantiation

completes sooner, relative to the foreground Create operation, and more of the Create op-

erations can execute quicker, since there is no BulkDelete instantiation necessary. We also

observe the standard deviation decreasing as the ratio of Sleep operations increases. This

is due to the longer Create times induced by competition between the background instan-

tiation workload and the foreground Create workload, occurring until the bulk operations

CHAPTER 6. EVALUATION 113

table is clean. When there are more Sleep operations executed, relative to Create opera-

tions, instantiation completes sooner and there are fewer data points off of the average.

Table 6.3: Paced Create after BulkDelete with background instantia-

tion – Results for the Create operation executed after a BulkDelete. The

ratio of Create to 16 ms sleep operations for each of the three experiments

is as shown.

Create:Sleep ratio
Create time (ms)

Average execution time Standard deviation

1:1 33.5 47.9

1:3 23.8 28.8

1:7 18.7 13.7

The time-series data for the runs are shown in Figure 6.14 on page 114. In these graphs

showing Create operation timing, we observe two aspects of the data. First, as there are

more Sleep operations executed, relative to Create, the time required for background in-

stantiation decreases. This is evident in the shorter band of data points off of the average

in the graphs. Second, the overall time required for the Create operations varies with the

operation ratio. It is entirely expected that, when Create operations execute approximately

50% of the time, you will reach 1000 executions faster than when it only executes 12.5%

of the time (with the 1:7 ratio).

Read after BulkClone

The second paced workload involves Read of objects after a BulkClone. Within a range of

1000 objects, we sequentially issue Create operations, then Write 64 kB in 16 kB blocks,

issue a single BulkClone operation, and immediately begin reading the objects intermixed

with 32 ms sleep operations. We choose 32 ms as it closely matches the timing of a Read

with invalid capabilities as reported in Section 6.2.5 on page 98.

The summarized results of three experimental runs are shown in Table 6.4 on page 116.

In the tabular data, we observe effects mirroring those for Create after BulkDelete, and

CHAPTER 6. EVALUATION 114

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180

1 Create to 1 Sleep

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180

O
p
e
ra

ti
o
n
 e

x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

1 Create to 3 Sleep

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180

Time since experiment start (s)

1 Create to 7 Sleep

Figure 6.14: Paced Create after BulkDelete.

CHAPTER 6. EVALUATION 115

 1

 10

 100

 1000

 100 150 200 250 300 350

1 Read to 1 Sleep

 10

 100

 1000

 100 150 200 250 300 350

O
p
e
ra

ti
o
n
 e

x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

1 Read to 3 Sleep

 10

 100

 1000

 100 150 200 250 300 350

Time since experiment start (s)

1 Read to 7 Sleep

Figure 6.15: Paced Read after BulkClone.

CHAPTER 6. EVALUATION 116

Table 6.4: Paced Read after BulkClone with background instantiation

– Results for the Read operation executed after a BulkClone. The ratio

of Read to 32 ms sleep operations for each of the three experiments is as

shown. The Read is of 64 kB in 16 kB blocks.

Read:Sleep ratio
Read time (ms)

Average execution time Standard deviation

1:1 56.1 34.4

1:3 49.9 27.0

1:7 43.7 18.6

the effects are for similar reasons. As there are more Sleep operations compared to Read

operations, the average and standard deviation of the Read execution times decrease. This

is because the background instantiation clears out the bulk operation table quicker, thereby

allowing for more operations to complete in the expected time.

The time-series data for the runs are shown in Figure 6.15 on page 115. Again, the

interpretation of the results mirrors that for Create after BulkDelete. Less overall time is

required as more Sleep operations execute relative to Read operations. Also, the period

of interference is reduced, since more background instantiations occur during the more

frequent Sleep operations.

Overall, we see that when background instantiation has a chance to execute, it improves

the performance of the foreground workload by removing a portion of the penalty incurred

by our bulk operation system.

CHAPTER 6. EVALUATION 117

6.5.3 Random bulk operation background instantiation

The first background instantiation selector algorithm is called “random.” It randomly picks

a bulk operation table (BulkClone or BulkDelete) from which to select a bulk operation. If

the chosen table is empty, no instantiation is performed. Otherwise, the algorithm picks a

random row from the selected table. The bulk operation is instantiated upon one randomly

selected object from the first 100 objects in the range affected by the bulk operation; the

discovery is done with a call to Enumerate.

Figure 6.16 on page 118 shows results for Read operations to randomly selected source

objects after a BulkClone. There are a number of features of the graphed data to point out.

The initial random Read operations exhibit relatively unpredictable execution times

ranging from the low 10’s of milliseconds to over 100 milliseconds. This occurs while the

foreground Read workload is competing with the background instantiation of the clones

and persists so long as there are clones to instantiate. The two “lines” of instantiation times

are caused by the Read accesses that must re-acquire capabilities for the cloned objects

and by the Read accesses that re-Read objects that have already been randomly accessed

during the experiment. The higher line, around 40 ms, corresponds to Read accesses that

the foreground workload has not yet accessed so it must perform a Lookup to the meta-

data server before proceeding with the low-level Read at the storage node. This compares

favorably with the data from Section 6.4.2 where the quickest instantiations take about

45 ms.The lower line, around 5 ms, corresponds to Read accesses for which the client has

already acquired metadata and capabilities and is using that cached information. This com-

pares favorably with the data from Section 6.2.5 where a Read with cached capabilities

and metadata takes an average of 5.9 ms. The lower line of data points appears slowly as

objects are re-accessed. The higher line of data points begins to show evidence of fewer

data points as the experiment progresses. The stairstep line showing average Read time

over 1 s trends downward during the experiment as more and more accesses use cached

metadata and capabilities to access instantiated clones. Both of these trends are expected

consequences of the random access pattern and the associated re-accessing of objects. In-

deed, over half of the accesses use cached metadata and capabilities since 2000 accesses

are performed and only 1000 objects were cloned.

CHAPTER 6. EVALUATION 118

 1

 10

 100

 1000

 160 170 180 190 200 210 220 230 240

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Read of 64 kB in 16 kB blocks
Average Read over 1s

Figure 6.16: Random Read after BulkClone with Random background

instantiation

 10

 100

 1000

 160 170 180 190 200 210 220 230 240

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Read of 64 kB in 16 kB blocks
Average Read over 1s

Figure 6.17: Sequential Read after BulkClone with Random background

instantiation

CHAPTER 6. EVALUATION 119

Figure 6.17 on page 118 shows, initially, the Read operations exhibiting unpredictable

execution times ranging from the low 10’s of milliseconds to over 100 milliseconds. Again,

this occurs while the foreground Read workload is competing with the background instan-

tiation of the clones. Interference persists so long as there are clones to instantiate. Only

1000 Read operations are issued after the BulkClone, so we do not observe the approxi-

mately 5 ms Read operations when valid, cached capabilities are used.

Figure 6.18 on page 120 shows the results of random Create after BulkDelete of 1000

objects, again showing the effects of the foreground workload competing with the back-

ground instantiation workload. At least 50% of the operations completed quickly, com-

ing in under 10 ms and comparing favorably with the baseline Create timing (average of

10.3 ms)

Figure 6.19 on page 120 shows results for sequential Create after BulkDelete, again

showing the effects of workload competition. Since the background instantiation is occur-

ring randomly, the end result is quite similar to that of random Create after BulkDelete.

Again, over 50% of the operations completed quickly, coming in under 10 ms.

Summary

The experiments for the random bulk operation instantiation selector algorithm produced

results as expected. When performing a Read operation after a BulkClone, the clone must

be instantiated before access can proceed, and an initial attempt to use cached metadata

and capabilities will prolong the operation. When performing a Create operation after a

BulkDelete of a written object, the delete must be instantiated before the Create can suc-

ceed. Once all instantiations have been performed, the Create time returns to the baseline.

6.5.4 FIFO bulk operation background instantiation

The second background instantiation selector algorithm used in our experiments is called

“FIFO.” It processes bulk operation table entries in FIFO order, instantiating the operation

on the lowest numbered object identifier affected by the entry with the lowest sequence

number.

CHAPTER 6. EVALUATION 120

 1

 10

 100

 1000

 80 85 90 95 100 105 110 115 120 125

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Create
Average Create over 1s

Figure 6.18: Random Create after BulkDelete with Random background

instantiation

 1

 10

 100

 1000

 155 160 165 170 175 180 185

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Create
Average Create over 1s

Figure 6.19: Sequential Create after BulkDelete with Random background

instantiation

CHAPTER 6. EVALUATION 121

 1

 10

 100

 1000

 80 100 120 140 160 180 200 220

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Read of 64 kB in 16 kB blocks
Average Read over 1s

Figure 6.20: Random Read after BulkClone with FIFO background in-

stantiation

 1

 10

 100

 1000

 160 170 180 190 200 210 220 230 240 250 260

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Read of 64 kB in 16 kB blocks
Average Read over 1s

Figure 6.21: Sequential Read after BulkClone with FIFO background in-

stantiation

CHAPTER 6. EVALUATION 122

Figure 6.20 on page 121 shows timing for Read operations to source objects after a

BulkClone. There are a number of features of the graphed data to point out.

First, we note the period of competition between the foreground Read workload and

the background instantiations at the beginning of the experiment. Then, as the random

choice of objects from which to Read begins to cycle through objects that have already

been touched, access proceeds more quickly. At about the same time, the background

instantiation workload completes. There is a clear binary distribution of Read times after

the background instantiation workload completes. The longer time is for Read operations

that are for objects that the client has not already Read and therefore must try to Read from

the storage node, be rejected for invalid capabilities, re-acquire fresh capabilities from the

metadata server, and execute the successful Read. The shorter time corresponds to Reads

executed with valid cached capabilities and metadata. Both times are as expected and match

with those for the “random” algorithm previously presented. The one-second average line

trends to faster Read execution time as more and more of the accesses are to objects for

which the client has cached and valid capabilities.

Figure 6.21 on page 121 shows operation execution timing for sequential Read opera-

tions being performed after a BulkClone. There are three clear and distinct regions of the

timings. The first region mirrors the trend shown in Figure 6.10 on page 108 but here it

is slower. The sequential foreground workload is colliding, near perfectly, with the back-

ground instantiation workload that is also proceeding sequentially. The second region fin-

ishes out the first pass of accesses to the 1000 objects with timing for a protocol interaction

that attempts to use cached capabilities to Read, is rejected by storage nodes, re-acquires

capabilities, and then succeeds. The third region shows timing for re-reading the 1000 ob-

jects when the client holds cached metadata and valid capabilities, and so proceeds quickly

with the Read.

Figure 6.22 on page 123 shows timings for creating objects randomly after BulkDelete

using FIFO selection for background instantiation. For the first few seconds, the back-

ground workload slows the foreground workload as they compete for resources. This re-

sults in a near 100 ms average Create time that is then followed by the expected sub-10 ms

average Create time after all instantiations have taken place. At least 75% of the accesses

CHAPTER 6. EVALUATION 123

 1

 10

 100

 1000

 100 105 110 115 120 125 130

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Create
Average Create over 1s

Figure 6.22: Random Create after BulkDelete with FIFO background in-

stantiation

 1

 10

 100

 1000

 10000

 140 160 180 200 220 240 260 280

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Create
Average Create over 1s

Figure 6.23: Sequential Create after BulkDelete with FIFO background

instantiation

CHAPTER 6. EVALUATION 124

occurred with sub-10 ms average Create time.

Figure 6.23 on page 123 shows timings for sequential Create after BulkClone with

FIFO selection of background instantiation. There is a much longer period of time dur-

ing which the foreground workload is adversely effected by the background instantiation

work. This dramatic (approaching an average of 1 s per Create) conflict is not unexpected.

Because of the sequential Create and sequential instantiation occurring, the two workloads

are competing for access to the same objects and same bulk operation table entries. Once

the instantiations are complete, the expected sub-10 ms average Create time finishes off the

accesses. As before, at least 75% of the accesses occurred with sub-10 ms average Create

time.

Summary

With random foreground workloads, we see the effects of competition slowing the oper-

ations. Once the instantiations are complete, the foreground workload’s behavior meets

expectations for execution without the need for on-demand instantiation. The sequential

foreground workloads show more extreme effects upon their execution with direct compe-

tition for access to individual objects as the FIFO background instantiation. The sequential

Read after BulkClone displays three phases to the execution of the experiment: competition

with background instantiation, re-acquisition of capabilities, and use of cached metadata

and capabilities for access.

6.5.5 LIFO bulk operation background instantiation

The third background instantiation selector algorithm used is called “LIFO.” It processes

bulk operation table entries in LIFO order, instantiating the operation on the highest num-

bered object identifier affected by the entry with the highest sequence number.

The results for the two experiments performing Read after BulkClone are very similar

to the results as shown for the “FIFO” background instantiation selector algorithm. With

random object Read there is a period of interference while clones are instantiated, then

progressively fewer client accesses need to re-acquire capabilities, and progressively more

CHAPTER 6. EVALUATION 125

 1

 10

 100

 1000

 160 180 200 220 240 260 280

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Read of 64 kB in 16 kB blocks
Average Read over 1s

Figure 6.24: Random Read after BulkClone with LIFO background in-

stantiation

 1

 10

 100

 1000

 90 100 110 120 130 140 150 160 170 180 190 200

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Read of 64 kB in 16 kB blocks
Average Read over 1s

Figure 6.25: Sequential Read after BulkClone with LIFO background in-

stantiation

CHAPTER 6. EVALUATION 126

random client accesses are using re-acquired, valid, cached capabilities. The results for

random object Read are shown in Figure 6.24 on page 125. With sequential object Read

the same pattern of interference, capability re-acquisition, and cached capability use shows

in the data. The data for random object read are shown in Figure 6.25 on page 125.

The LIFO selector is similar to the FIFO selector when a single bulk operation has been

issued. As random foreground operations fragment what was once a single bulk operation

table entry, the background instantiation processing proceeds in an orderly fashion perform-

ing operations on either the lowest or highest object identifier referenced. As sequential

foreground operations work, they compete with the background instantiation for database

access to the same single bulk operation table entry. The FIFO processing is working on

the same objects (lowest object identifier) as the sequential foreground workload and at the

same end of the bulk operation table entry. The LIFO background processing is working

on the highest object identifier of the single bulk operation table entry while the foreground

workload is chipping away at the lowest object identifier of the single table entry.

For Creates after a BulkDelete, the results for LIFO are very similar to those for FIFO.

Once the background instantiation workload has exhausted all instantiation possibilities,

the foreground workload proceeds quickly. Results for random Create are shown in Fig-

ure 6.26 on page 127. The sequential Create after BulkDelete continues to compete for

access to the same bulk operation table entry and thereby extends the time for experiment

completion. Results for sequential Create are shown in Figure 6.27 on page 127.

For both sequential and random sequential Creates, at least 75% of the Create opera-

tions executed in less than 10 ms.

Summary

We see results for LIFO that are very similar to those for FIFO. This can be attributed to the

random workloads’ unpredictability with sequential processing. Also, the sequential fore-

ground workloads’ competition with background instantiation for the same bulk operation

table entry.

CHAPTER 6. EVALUATION 127

 1

 10

 100

 1000

 70 75 80 85 90 95 100

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Create
Average Create over 1s

Figure 6.26: Random Create after BulkDelete with LIFO background in-

stantiation

 1

 10

 100

 1000

 10000

 120 140 160 180 200 220 240 260 280 300 320

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Create
Average Create over 5s

Figure 6.27: Sequential Create after BulkDelete with LIFO background

instantiation

CHAPTER 6. EVALUATION 128

6.5.6 Widest span of objects bulk operation background instantiation

The fourth background instantiation selector algorithm is called “widest”. It processes bulk

operation table entries starting with the table entry that spans the widest range of objects.

In the case of a tie, it prefers the table entry with the lowest object identifier for BulkClone,

and highest object identifier for BulkDelete. For BulkClone and for BulkDelete, the lowest

object identifier in the source object range is instantiated.

The results for the two experiments performing Read after BulkClone are very simi-

lar to the results as shown for the “FIFO” and “LIFO” background instantiation selector

algorithms. With random object Read, there is a period of interference while clones are

instantiated, then progressively fewer client accesses need to re-acquire capabilities, and

progressively more random client accesses are using re-acquired, valid, cached capabilities.

The results for random object Read are shown in Figure 6.28 on page 129. With sequential

object Read, the same pattern of interference, capability re-acquisition, and cached capa-

bility use shows in the data. The data for random object read are shown in Figure 6.29 on

page 129.

As random foreground operations fragment what was once a single bulk operation table

entry, the background instantiation processing proceeds in an orderly fashion performing

operations on the widest range of objects. As sequential foreground operations work, they

compete with the background instantiation for database access to the same single bulk

operation table entry. The “widest” processing is working on the same objects (lowest

object identifier) as the sequential foreground workload and at the same end of the bulk

operation table entry.

For Create after BulkDelete, the results for “widest” are very similar to those for FIFO

and LIFO. With random Create after BulkDelete, once the background instantiation work-

load has exhausted all instantiation possibilities, the foreground workload proceeds quickly.

Results for random Create are shown in Figure 6.30 on page 130. The sequential Create

after BulkDelete continues to compete for access to the same bulk operation table entry

and thereby extends the time for experiment completion. Results for sequential Create are

shown in Figure 6.31 on page 130. For both, at least 75% of the Create operations executed

in less than 10 ms.

CHAPTER 6. EVALUATION 129

 1

 10

 100

 1000

 160 180 200 220 240 260 280

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Read of 64 kB in 16 kB blocks
Average Read over 1s

Figure 6.28: Random Read after BulkClone with background instantiation

of widest range

 1

 10

 100

 1000

 90 100 110 120 130 140 150 160 170 180 190

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Read of 64 kB in 16 kB blocks
Average Read over 1s

Figure 6.29: Sequential Read after BulkClone with background instantia-

tion of widest range

CHAPTER 6. EVALUATION 130

 1

 10

 100

 1000

 85 90 95 100 105 110 115

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Create
Average Create over 1s

Figure 6.30: Random Create after BulkDelete with background instantia-

tion of widest range

 1

 10

 100

 1000

 10000

 80 100 120 140 160 180 200 220 240 260 280

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Create
Average Create over 5s

Figure 6.31: Sequential Create after BulkDelete with background instan-

tiation of widest range

CHAPTER 6. EVALUATION 131

Summary

We see results for “widest” that are very similar to those for FIFO and LIFO. This can be

attributed to the random workloads’ unpredictability and the sequential workloads’ com-

petition for instantiation of the same objects and access to the same bulk operation table

entry.

6.5.7 Thinnest span of objects bulk operation background instantia-

tion

The fifth background instantiation selector algorithm is called “thinnest”. It processes bulk

operation table entries starting with the table entry that spans the thinnest range of objects

(i.e., the range with the smallest difference in object identifiers). In the case of a tie, it

prefers the table entry with the lowest object identifier for BulkClone, and highest object

identifier for BulkDelete. For BulkClone and for BulkDelete, the lowest object identifier

in the source object range is instantiated.

The results for the two experiments performing Read after BulkClone are very similar

to the results as shown for the “FIFO,” “LIFO” and “thinnest” background instantiation se-

lector algorithms. With random object Read, there is a period of interference while clones

are instantiated, then progressively fewer client accesses need to re-acquire capabilities, and

progressively more random client accesses are using re-acquired, valid, cached capabilities.

The results for random object Read are shown in Figure 6.32 on page 132. With sequential

object Read, the same pattern of interference, capability re-acquisition, and cached capa-

bility use shows in the data. The data for random object read are shown in Figure 6.33 on

page 132.

As random foreground operations fragment what was once a single bulk operation table

entry, the background instantiation processing proceeds in an orderly fashion performing

operations on the thinnest range of objects. As sequential foreground operations work,

they compete with the background instantiation for database access to the same single bulk

operation table entry. The “thinnest” processing is working on the same objects (lowest

CHAPTER 6. EVALUATION 132

 1

 10

 100

 1000

 160 180 200 220 240 260 280

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Read of 64 kB in 16 kB blocks
Average Read over 1s

Figure 6.32: Random Read after BulkClone with thinnest range back-

ground instantiation

 1

 10

 100

 1000

 160 170 180 190 200 210 220 230 240 250 260

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Read of 64 kB in 16 kB blocks
Average Read over 1s

Figure 6.33: Sequential Read after BulkClone with thinnest range back-

ground instantiation

CHAPTER 6. EVALUATION 133

object identifier) as the sequential foreground workload and at the same end of the bulk

operation table entry.

For Create after BulkDelete, the results for “thinnest” are very similar to those for

FIFO, LIFO and “widest.” With random Create after BulkDelete, once the background

instantiation workload has exhausted all instantiation possibilities, the foreground work-

load proceeds quickly. Results for random Create are shown in Figure 6.34 on page 134.

The sequential Create after BulkDelete continues to compete for access to the same bulk

operation table entry and thereby extends the time for experiment completion. Results for

sequential Create are shown in Figure 6.35 on page 134. For both, at least 75% of the

Create operations executed in less than 10 ms.

Summary

We see results for “thinnest” that are very similar to those for FIFO, LIFO and “widest”.

This can be attributed to the random workloads’ unpredictability and the sequential work-

loads’ competition for instantiation of the same objects and access to the same bulk opera-

tion table entry.

Ultimately, these experiments show that it is important to match your background in-

stantiation selector algorithm to your workload. The random instantiation was easy to

implement and matches well with random foreground workloads, and with results for se-

quential workloads. The other selector algorithms exhibited virtually identical performance

due to the contention for access to the bulk operation table.

CHAPTER 6. EVALUATION 134

 1

 10

 100

 1000

 150 155 160 165 170 175

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Create
Average Create over 1s

Figure 6.34: Random Create after BulkDelete with background instantia-

tion of thinnest range

 1

 10

 100

 1000

 10000

 80 100 120 140 160 180 200 220 240 260 280

O
p

e
ra

ti
o

n
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Time since experiment start (s)

Create
Average Create over 1s

Figure 6.35: Sequential Create after BulkDelete with background instan-

tiation of thinnest range

CHAPTER 6. EVALUATION 135

6.6 NFS server

The experiments in this section use the NFS server described in Section 4.5 on page 42. We

first experiment with creating, cloning, and deleting files. Various methods of “cloning” are

used to gauge the effects of that bulk operation. Then we use the PostMark benchmark [45]

with cloning and background instantiation as we search for the most advantageous clone

strategy in a simulated real-world situation. The NFS server is configured with 128 MB of

cache memory.

6.6.1 Baseline behavior

To establish the baseline behavior of the NFS server, we use simple command-line pro-

grams to create, delete, write, and read files. Timing is accomplished through the use of

the date command with microsecond resolution. Versions of the experiments were con-

ducted with and without BulkClone being used so that the different execution times can be

compared.

In these baseline experiments four computers are involved. There is a single storage

node holding data. There is a single metadata server, running with bulk operations enabled.

A single NFS server is running and using a data distribution of 1− o f − 1 with 16 kB

blocks. No files of appreciable size are created directly by the benchmark, so only internal

operations of the NFS server (i.e., manipulations of metadata and directories) generate

accesses storage. A single NFS client accesses the NFS server.

Our baseline experiment involves creating and deleting sets of NFS files. For each of

various numbers of files in a set, the following operations are executed and bracketed by

calls to date. First, the entire set of files is created in an empty directory, one file at a time,

using the touch command. Second, in three-out-of-four cases, the file set is copied by

using either a BulkClone operation through the NFS server or by using the cp command.

Third, and finally, the entire set of files is removed, one file at a time, by using the rm

command. A single instance of the NFS server is used for an experimental run, and it

remains mounted on the NFS client throughout operations on the different file set sizes.

CHAPTER 6. EVALUATION 136

Table 6.5: NFS File Create/Clone/Delete benchmark summary – The

summary information from experiments that created a number of files in

one directory on the NFS server, cloned them all, and then deleted the orig-

inal files. The raw data can be found in Section A.5 starting on page 221.

Baseline experiment average results, times in H:M:s.ms

Experiment
Size of file set

100 1000 10000

Clone phase

Baseline N/A N/A N/A

Clone via copy 11.789 1:45.991 22:41.289

Prolific clone 0.704 1.384 3.020

Chain-of-clones clone 0.924 1.606 16.762

Delete phase

Baseline 5.364 56.810 10:08.828

Clone via copy 5.861 58.643 10:06.536

Prolific clone 11.148 1:52.000 43:38.226

Chain-of-clones clone 14.021 2:32.604 4:59:07.283

The average execution times of the phases of the various experiments are shown in Ta-

ble 6.5 on page 136. For each of the three file set sizes, there are data points for each of the

three experiment phases with different clone variations in the second phase. Comparisons

of results are valid column-wise (across different clone strategies) and row-wise (across

different file set sizes).

During the second phase of the experiment, we expect that cloning a file system with

more objects should take longer as the file set increases in size. Only a single “clone”

operation is issued per experiment, in contrast to the multiple create or remove operations

that are executed once for each file in the file sets. The lowest value in a column indicates

the quickest manner of cloning determined by our experiments. The baseline experiment

did not involve a copy or clone of the files, so there are no entries for its row. Making

a “clone” by copying the file set into another directory is painfully slow. Both cloning

CHAPTER 6. EVALUATION 137

situations outperform it (although prolific cloning takes much longer with 10,000 files),

with prolific cloning presenting the lowest average time. The clone time takes longer with

larger file sets, because the NFS server needs to flush its caches to capture a consistent file

system state before performing a BulkClone.

The final phase of the experiment deletes the created objects one-by-one with the rm

command. The “baseline” and “clone via copy” experiments yield similar results as no

BulkClone is involved and therefore no clone instantiation takes place. Both situations

simply remove files from the file system one-by-one. Prolific cloning again outperforms

chain-of-clones cloning in this phase. The difference is dramatic in the case of 10,000

files: prolific cloning takes only 4 times longer than the baseline case, but it takes one-sixth

the time of chain-of-clones (which is almost 30 times slower than the baseline case). The

performance difference between the two clone strategies is expected, given the observances

made in Section 6.4.1 on page 106.

6.6.2 PostMark

The PostMark benchmark [45] is a C program that performs a number of transactions

upon files. Each transaction randomly performs a read or append (write) of a random file

followed by a create or delete of a random file. The configuration used for PostMark runs

is shown in Figure 6.36 on page 138.

Our experiments first measure PostMark unmodified. Then, we modify three copies

of the program to create clones (one to use the cp command, one to use prolific clones,

and one to use chains-of-clones) every ten-percent of the way through the execution of the

benchmark’s transaction phase. Experiments are run with and without various background

instantiation selector algorithms active.

The experiments involve four computers: the storage node, the metadata server, the

NFS server, and the NFS client where the PostMark benchmark program is run.

The results from individual experiment runs are available in various tables in the Ap-

pendix, Section A.6 starting on page 229. A summary of the results is presented here in

Table 6.6 on page 139.

CHAPTER 6. EVALUATION 138

PostMark v1.5 : 3/27/01

Reading configuration from file ’/tmp/postmark script 1.pmrc’

Current configuration is:

The base number of files is 500

Transactions: 500

Files range between 500 bytes and 9.77 kilobytes in size

Working directory: /ux1/ss/ss224

Block sizes are: read=512 bytes, write=512 bytes

Biases are: read/append=5, create/delete=5

Using Unix buffered file I/O

Random number generator seed is 42

Report format is verbose.

Figure 6.36: PostMark configuration for NFS experiments.

The NFS server is mounted at /ux1/ss/ss224. Bias values of 5 indicate a 50% chance.

Running the default configuration of PostMark serves as an “optimal” value for the

hardware and software setup used in the experiments. The difference between the infor-

mation gathered here and that from experiments with clones being made helps us to learn

about the costs induced with using bulk operations to clone a file system.

The first experiment with a modified PostMark binary uses the cp command to copy all

of the files in the benchmark to a separate directory on the NFS server every 10% of the

way through the benchmark’s transaction phase (i.e., at 0%, 10% . . . 90%). This effort of

copying the files accomplishes nearly the same results of creating a file system snapshot as

using the BulkClone operation (except for atomicity). All of the file contents are captured,

but the timestamp metadata of the copy acting as the snapshot is different. When using

copy to simulate cloning, the total time is 4.5 times longer than the plain PostMark run.

The transaction time is over 11 times longer, and the read and write bandwidth are 5 times

slower than the default case.

The second modified PostMark executable uses the BulkClone operation to clone the

entire file system upon which the benchmark is running every 10% of the way through the

transaction phase in a chain-of-clones fashion. Without background instantiation, the total

CHAPTER 6. EVALUATION 139

Table 6.6: Summary of PostMark results – Average results from mul-

tiple experimental runs of various configurations of the PostMark bench-

mark. Most experiments involved periodic BulkClone operations issued

through the NFS server every 10% through the transaction phase (i.e., at

0%, 10% . . . 90%). BulkClones were made in a chain-of-clones manner

or a prolific clones manner. For most experiments, background instantia-

tions, with one of three algorithms (random, LIFO, or thinnest range), were

also active. Original data for the summary presented here can be found in

Section A.6 starting on page 229.

Postmark experiment average results

Experiment Total Time (s) Transaction Time (s) Read (kB/s) Write (kB/s)

No cloning 156.07 57.67 9.32 30.38

Clone via copy 718.80 634.00 1.96 6.40

Chain 292.62 181.29 4.83 15.73

Chain, Random 401.70 285.60 3.50 11.39

Chain, LIFO 409.60 301.10 3.42 11.14

Chain, Thinnest 380.10 289.90 3.70 12.06

Prolific 315.38 149.81 4.52 14.72

Prolific, Random 348.80 250.80 4.03 13.13

Prolific, LIFO 333.80 234.50 4.22 13.76

Prolific, Thinnest 318.20 222.90 4.42 14.40

execution time is twice that of the base case, the transaction time takes 3 times as long,

and the read and write bandwidth is halved. Compared to the use of copy instead of clone,

the total execution time is over 2 times faster, transaction time is over 3 times faster, and

the read and write bandwidths are 2.5 times higher. Adding background instantiation of

bulk operations further slows the execution of the benchmark. However, the decrease in

performance is still a great improvement over the use of copy: total time and transaction

time are twice as fast and bandwidths are double.

The third modified PostMark executable uses the BulkClone operation in a prolific

clone fashion. Without background instantiation, the total execution time is twice that

of the base case, the transaction time takes just less than 3 times as long and, the read and

CHAPTER 6. EVALUATION 140

write bandwidth is halved. Compared to the use of copy instead of clone, the total execution

time is over 2 times faster, transaction time is over 4 times faster, and the read and write

bandwidths are twice as high. Adding background instantiation of bulk operations further

slows the execution of the benchmark. However, the decrease in performance is still a great

improvement over the use of copy: total time and transaction time are more than twice as

fast and bandwidths are more than doubled.

Summary

Overall, using BulkClone to create snapshots during the runs of PostMark showed better

performance than naı̈ve copying of files. Both prolific and chains-of-clones exhibited about

half of the performance of the default PostMark run, with plain chains-of-clones doing the

best (and belying its poor performance in the create-clone-delete benchmark).

6.7 Summary

Early in this chapter, our baseline results showed the performance of the implemented

system on basic operations. Building the metadata server around the PostgreSQL database

allowed for easier implementation of the system. However, it induced massive overheads

compared with what one might expect of custom C/C++ code. We noted that our bulk

operation algorithms contributed additional overhead after comparing operations with, and

without, bulk operation code active: bulk operations are not free. As an experimental

platform for bulk operations, however, it is still valid for demonstrating the concept of

delayed instantiation bulk operations.

Client accesses suffer after bulk operations. This is due, in part, to the necessary re-

acquisition of capabilities that were invalidated as a part of the bulk operation execution

process. On-demand instantiation also increases these operation times.

Background instantiation is capable of eliminating the instantiation step of subsequent

accesses to objects affected by bulk operations. When the metadata server is perform-

ing background instantiation concurrent with a foreground client workload, performance

CHAPTER 6. EVALUATION 141

suffers until instantiation completes. Random selection of the object to instantiate in the

background avoids pathological behaviors encountered in other selection algorithms.

Prolific cloning is a more sustainable cloning strategy, since operation time for chains-

of-clones increased with each operation. With some consideration for NFS file server meta-

data structures (e.g., directory entries), the BulkClone operation can be used to provide a

file service with snapshots and forks atop distributed, object-based storage.

Chapter 7

Conclusions and future work

This dissertation presents and analyzes a solution whereby a distributed, object-based stor-

age system can perform atomic clone and delete operations on ranges of objects and use

them to perform storage management tasks. The method uses existing client-side algo-

rithms, simple single-object operations at storage nodes, and changes to the metadata

server. Details of the changes to the metadata server algorithms are presented in detail.

The protocols are designed to accommodate m − o f − n data encodings and multiple-

storage-node data distributions. Using the opportunities available within the semantics

of the BulkClone operation, two strategies for using that operation are analyzed — chains-

of-clones and prolific clones — with prolific cloning found to provide much more robust

performance. Schemes for mitigating the costs of delayed instantiation of bulk operations

through background instantiation are investigated and found to be an important component:

they address one of the major costs associated with delayed instantiation bulk operations.

An NFS server using the storage system’s BulkClone operation provides a capstone demon-

stration of the ability to generate file system snapshots in distributed, object-based storage.

Overall, this dissertation introduces and explores a method of atomically cloning and

deleting large portions of the object identifier namespace to distributed, object-based stor-

age systems. The method allows for centralized coordination of bulk operations across

multiple storage nodes. The method introduces access costs after bulk operations that are

associated with capability revocation and on-demand instantiation. The on-demand in-

142

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 143

stantiation cost can be eliminated through background instantiation during idle time, and

random choice of which objects to background instantiate avoids pathological competition

with foreground workloads.

Future work

This section outlines three areas for additional study of delayed-instantiation bulk oper-

ations: evaluation in a non-database metadata server, capability system enhancements to

overcome revocation costs, better background instantiation idle-time detection and selector

algorithms.

First, our use of the PostgreSQL database system for the base of the metadata server

had its advantages and disadvantages. It allowed us to relatively quickly implement and

experiment with algorithms. It provided a high-level programming language and natively

supported transactions. The debugging features eased the implementation task. However,

performance was poor due to integration issues with the overall storage system (a meta-

data server front-end and helper were necessary) and poor optimization of queries (even

with available indices). A custom-built metadata server should be an order of magnitude

faster, because it would not have the overheads associated with database generalities of ac-

cess and can use low-level, hand-optimized routines. Experiments with a more performant

metadata server should confirm the effectiveness of the approach and the relative merits of

the approach studied.

Second, after a bulk operation, capability re-acquisition saps performance by intro-

ducing significant latency. Three possibilities could be explored. First, clients could be

smarter. They could erase cached capabilities for affected objects when they issue a bulk

operation. This would only help the issuing system, however. Also, clients could be in-

formed when capabilities are revoked, just as storage nodes are contacted now. Then,

they would know when to purge capabilities from their cache (uncontacted clients would

proceed to encounter “invalid capability” messages). Second, alternatives to capability re-

vocation could be investigated. Storage nodes could suspend access to objects affected by

a bulk operation as they go through a two-phase commit to enact a bulk operation. This

would be akin to placing bulk operation responsibility at the storage nodes and therefore

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 144

would work best in error-free cases. Third, range-based capabilities, good for access to a

range of objects, could be used to involve more objects in capability granting protocol steps

(and revocation steps). Then, when a client requests a new capability after a revocation, it

does not need to re-acquire capabilities for each and every object.

Third, management of background instantiation could be improved. The presented al-

gorithms performed poorly with our aggressive idle-time detection system. More accurate

and generous idle-detection could be pursued, and the suite of selection algorithms could

be expanded to be more intelligent. Much work has been done on idle time detection in

other aspects of storage, and these schemes should apply here as well.

Index

ApproveWrite, 39, 92

background instantiation, 29, 34, 40, 109

block encoding algorithm, 15

block size, 14

bulk operation, 3, 4

at client, 24

at metadata server, 24

at storage nodes, 22

correctness, 75

delayed instantiation, 5

responsibility, 21

considerations, 21

BulkClone, 26, 38, 56, 60, 106

chain-of-clones, 26

instantiation, 28

prolific clone, 26

uses, 27

BulkDelete, 28, 38, 55, 62, 102

uses, 28

byte stream, 12

capability, 13, 85

authorization, 13

delayed instantiation, 31

generation, 85

invalid, 13

related work, 9

revocation, 13, 32, 36, 37, 86, 94

chain-of-clones, 26, 61, 106

client

API, 17

capability, 13

description, 16

implementation, 35

clone, 10

snapshot, 10

copy-on-write, 31

Create, 46, 74, 87, 103

data distribution, 14, 59

delayed instantiation, 5, 29, 61

benefits, 30

capability, 31

example, 5, 30

Delete, 51

distributed, object-based storage, 1, 2

client, 2

metadata server, 2

namespace, 2

namespace server, 2

145

INDEX 146

related work, 7

storage node, 2

Divorce, 71

Enumerate, 47, 73

extent, 14

FinishWrite, 39, 92

fork, 10

fragments, 15

GetMDOID, 64

immediate execution, 5

immediate instantiation, 29

InstantiateHole, 68, 104

InstantiatePassThroughLimits, 66

instantiation, 29, 33, 61

background, 29

delayed, 29

example, 30

immediate, 29

on-demand, 29

lazy evaluation, 31

Linux, 81

list of storage nodes, 16

Lookup, 47, 74, 89, 95

m-of-n encoding, 16, 33

metadata server

API, 20

BulkClone table, 59

BulkDelete table, 58

capability, 13

description, 19

Divorce, 71

ExtentMetadata table, 59

GetMDOID, 64

implementation, 37

InstantiateHole, 68

InstantiatePassThroughLimits, 66

object table, 58

PendingWrite table, 59

multi-tenant, 1

namespace, 11

NFS server, 42, 135

snapshot, 44

object, 11

attributes, 12

grouping, 25

object identifier, 11, 43

namespace, 11

object model, 7

object-based storage, 8

characteristics, 8

standardization, 10

OID, see object identifier

on-demand instantiation, 29, 31

pass-through clone, 62, 63

PostgreSQL, 81, 84

PostMark, 135

INDEX 147

prolific clone, 26, 60, 106

range, 25, 26

restriction, 26

range splitting, 31

with timestamp tracking, 32

Read, 54, 98

SSIO Read, 54, 98, 107

revocation set, 33

root-object, 42

snapshot, 10, 44, 138

fork, 10

related work, 9

storage blow-up, 16

storage management, 3

bulk operation, 4

storage node

API, 18

capability, 13

description, 17

implementation, 36

super-block, 42

super-object, 27

threshold based encoding, 32

threshold encoding parameters, 15

timestamp tracking, 31, 32

with range splitting, 32

workload scripting, 82

Write, 52, 89

SSIO Write, 52, 95

Bibliography

Numbers at the end of an entry refer to the pages on which that entry is cited.

[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R. Ganger, J. Hendricks, A. J.

Klosterman, M. Mesnier, M. Prasad, B. Salmon, R. R. Sambasivan,

S. Sinnamohideen, J. D. Strunk, E. Thereska, M. Wachs, and J. J. Wylie. Ursa

Minor: versatile cluster-based storage. Conference on File and Storage Technologies

(San Francisco, CA, 13–16 December 2005), pages 59–72. USENIX Association,

2005. 1, 8, 9, 33, 81

[2] M. E. Adiba and B. G. Lindsay. Database snapshots. International Conference on

Very Large Databases (Montreal, Canada, 01–03 October 1980), pages 86–91.

IEEE, 1980. 9

[3] M. K. Aguilera, S. Spence, and A. Veitch. Olive: distributed point-in-time branching

storage for real systems. Symposium on Networked Systems Design and

Implementation (San Jose, CA, 08–10 May 2006), pages 367–380. USENIX

Association, 2006. 9

[4] K. A.-H. M. Ali. Object-oriented storage management and garbage collection in

distributed processing systems. PhD thesis. Royal Institute of Technology,

Department of Computer Science, Stockholm, Sweden, December 1984. 8

[5] G. Almes and G. Robertson. An extensible file system for HYDRA. Third

International Conference on Software Engineering (ICSE). (Atlanta, GA). IEEE

Computer Society, May 1978. 8, 9

[6] Amazon Web Services LLC. Amazon Simple Storage Service (Amazon S3), June

2009. http://aws.amazon.com/s3/. 1, 8

[7] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The

object-oriented database system manifesto. Deductive and Object-Oriented

Databases (Kyoto, Japan, 4–6 December 1989), pages 223–240, 1989. 8

148

BIBLIOGRAPHY 149

[8] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, N. Rinetzky, O. Rodeh,

J. Satran, A. Tavory, and L. Yerushalmi. Towards an object store. IEEE Symposium

on Mass Storage Systems (San Diego, CA, 07–10 April 2003), pages 165–176.

IEEE, 2003. 1, 8

[9] E. Bertino and L. Martino. Object-oriented database management systems: concepts

and issues. IEEE Computer, 24(4):33–47. IEEE, April 1991. 8

[10] A. D. Birrell and R. M. Needham. A universal file server. IEEE Transactions of

Software Engineering, SE–6(5):450–453. IEEE, September 1980. 8, 9

[11] J. Brandenberg. OSD snapshot proposal v3.14. Storage Networking Industry

Association (SNIA), 21 November 2007. SNIA OSD Working Group, Subgroup

Snapshot proposal document from www.snia.org. 10, 22

[12] M. R. Brown, K. N. Kolling, and E. A. Taft. The Alpine file system. ACM

Transactions on Computer Systems, 3(4):261–293, November 1985. 9

[13] J. Brzezinski and D. Wawrzyniak. Consistency requirements of distributed shared

memory for Dijkstra’s mutual exclusion algorithm. International Conference on

Distributed Computing Systems (Taipei, Taiwan, 10–13 April 2000), pages 618–625.

IEEE, 2000. 10

[14] B. Callaghan, B. Pawlowski, and P. Staubach. RFC 1813 - NFS version 3 protocol

specification. RFC–1813. Network Working Group, June 1995. 9, 42

[15] K. M. Chandy and L. Lamport. Distributed snapshots: determining global states of

distributed systems. ACM Transactions on Computer Systems, 3(1):63–75, February

1985. 9

[16] C. Chao, R. English, D. Jacobson, A. Stepanov, and J. Wilkes. Mime: high

performance parallel storage device with strong recovery guarantees. Technical

report HPL-92-9. Hewlett-Packard Laboratories, Concurrent Systems Project, 18

March 1992. 8

[17] A. L. Chervenak, V. Vellanki, and Z. Kurmas. Protecting file systems: a survey of

backup techniques. Joint NASA and IEEE Mass Storage Conference (March 1998),

1998.

[18] S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett, W. A. Mason, and R. N.

Sidebotham. The Episode file system. USENIX Annual Technical Conference (San

Francisco, CA), pages 43–60, 1992.

BIBLIOGRAPHY 150

[19] Cluster File Systems Inc. Lustre: a scalable, high-performance file system. White

Paper. Cluster File Systems, Inc., November 2002. 1, 8

[20] P. F. Corbett and D. G. Feitelson. Design and implementation of the Vesta parallel

file system. Scalable High-Performance Computing Conference (Knoxville,

Tennessee), pages 63–70, 23–25 May 1994. 9

[21] R. A. Coyne and H. Hulen. An introduction to the Mass Storage System Reference

Model, version 5. IEEE Symposium on Mass Storage Systems (Monterey, CA),

pages 47–53. IEEE Computer Society, 26–29 April 1993. 8

[22] S. C. Crawley. The entity system: an object-based filing system. PhD thesis,

published as 86. University of Cambridge Computer Laboratory, April 1986. 8

[23] R. C. Daley and P. G. Neumann. A general-purpose file system for secondary

storage. AFIPS Fall Joint Computer Conference, pages 212–230, 1965. 8

[24] J. Dion. The Cambridge file server. Operating Systems Review, 14(4):26–35,

October 1980. 8

[25] EMC Corp. ATMOS: A global offering for information storage and distribution,

June 2009. http://www.emc.com/products/detail/software/atmos.htm. 1, 8

[26] EMC Corp., August 2009. http://www.emc.com. 42

[27] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. FAB: enterprise storage

systems on a shoestring. Hot Topics in Operating Systems (Lihue, HI, 18–21 May

2003), pages 133–138. USENIX Association, 2003. 9

[28] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. ACM

Symposium on Operating System Principles (Lake George, NY, 10–22 October

2003), pages 29–43. ACM, 2003. 1, 8, 9

[29] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff, C. Hardin,

E. Riedel, D. Rochberg, and J. Zelenka. A cost-effective, high-bandwidth storage

architecture. Architectural Support for Programming Languages and Operating

Systems (San Jose, CA, 3–7 October 1998). Published as SIGPLAN Notices,

33(11):92–103, November 1998. 1, 7

[30] G. A. Gibson, D. F. Nagle, K. Amiri, F. A. Chang, H. Gobioff, E. Riedel,

D. Rochberg, and J. Zelenka. Filesystems for network-attached secure disks.

BIBLIOGRAPHY 151

CMU–CS–97–118. Computer Science Department, Carnegie-Mellon University,

Pittsburgh, PA, July 1997. 1, 8, 9

[31] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. Feinberg, H. Gobioff, C. Lee,

B. Ozceri, E. Riedel, and D. Rochberg. A case for network-attached secure disks.

Technical Report CMU–CS–96–142. School of Computer Science, Carnegie Mellon

University, September 1996. 7

[32] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. M. Feinberg, H. Gobioff,

C. Lee, B. Ozceri, E. Riedel, D. Rochberg, and J. Zelenka. File server scaling with

network-attached secure disks. ACM SIGMETRICS Conference on Measurement

and Modeling of Computer Systems (Seattle, WA, 15–18 June 1997). Published as

Performance Evaluation Review, 25(1):272–284. ACM, June 1997. 7

[33] D. K. Gifford, R. M. Needham, and M. D. Schroeder. The Cedar file system.

Communications of the ACM, 31(3):288–298, March 1988. 9

[34] H. Gobioff. Security for a high performance commodity storage subsystem. PhD

thesis, published as Technical Report CMU–CS–99–160. School of Computer

Science, Carnegie Mellon University, July 1999. 8, 9

[35] H. Gobioff, G. Gibson, and D. Tygar. Security for network attached storage devices.

CMU-CS-97-185. School of Computer Science, Carnegie Mellon University,

October 1997. 8, 9

[36] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann Publishers, 1993. 9

[37] R. Grimm, W. C. Hsieh, W. de Jonge, and M. F. Kaashoek. Atomic recovery units:

failure atomicity for logical disks. International Conference on Distributed

Computing Systems (Hong Kong, 27–30 May 1996), pages 26–36. IEEE, 1996. 9

[38] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming

Languages, 13(1):124–149. ACM Press, 1991. 10

[39] D. Hitz, J. Lau, and M. Malcolm. File system design for an NFS file server

appliance. Winter USENIX Technical Conference (San Francisco, CA, 17–21

January 1994), pages 235–246. USENIX Association, 1994. 10

[40] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N.

Sidebotham, and M. J. West. Scale and performance in a distributed file system.

BIBLIOGRAPHY 152

ACM Transactions on Computer Systems (TOCS), 6(1):51–81. ACM, February

1988. 3, 10

[41] A. R. Hurson, S. H. Pakzad, and J.-B. Cheng. Object-oriented database management

systems: evolution and performance issues. Computer, 26(2):48–60. IEEE, February

1993. 8

[42] Information technology - Object Based Storage Devices Command Set (OSD).

INCITS 400 – 2004 [R2008]. InterNational Committee for Information Technology

Standards (INCITS), February 2009. 10

[43] S. Iren, D. Nagle, J. Satran, D. Naor, M. Factor, J. Muth, T. Lanzatella, J. Breher,

and M. Chanalapaka. OSDv2 collections. Draft version 0.6. Storage Networking

Industry Association (SNIA), June 2006. 1, 8, 10

[44] M. Ji. Instant snapshots in a federated array of bricks. Technical report

HPL-2005-15. Hewlett-Packard, January 2005.

[45] J. Katcher. PostMark: a new file system benchmark. Technical report TR3022.

Network Appliance, October 1997. 135, 137

[46] M. L. Kazar, B. W. Leverett, O. T. Anderson, V. Apostolides, B. A. Bottos,

S. Chutani, C. F. Everhart, W. A. Mason, S.-T. Tu, and E. R. Zayas. DEcorum file

system architectural overview. Summer USENIX Technical Conference (Anaheim,

California), pages 151–163, 11–15 June 1990.

[47] S. N. Khoshafian and G. P. Copeland. Object identity. Object-Oriented

Programming: Systems, Languages, and Applications (Portland, OR, September

29–October 2 1986), pages 406–416. ACM Press, 1986. 9

[48] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, 1978. 10

[49] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM

Transactions on Programming Languages and Systems, 4(3):382–401. ACM, July

1982. 10

[50] E. K. Lee and C. A. Thekkath. Petal: distributed virtual disks. Architectural Support

for Programming Languages and Operating Systems (Cambridge, MA, 1–5 October

1996). Published as SIGPLAN Notices, 31(9):84–92, 1996. 8

BIBLIOGRAPHY 153

[51] P. W. Madany. An object-oriented framework for file systems. PhD thesis, published

as UIUCDCS–R–92–1751. Department of Computer Science, University of Illinois

at Urbana-Champaign, June 1992. 8

[52] E. T. Mueller. Implementation of nested transactions in a distributed system.

Technical report. University of California, Los Angeles, 1983. 9

[53] E. T. Mueller, J. D. Moore, and G. J. Popek. A nested transaction mechanism for

LOCUS. ACM Symposium on Operating System Principles (Bretton Woods, New

Hampshire). Published as Operating Systems Review, 17(5):71–89, October 1983. 9

[54] Network Appliance, Inc., August 2009. http://www.netapp.com. 42

[55] M. A. Olson. The design and implementation of the Inversion file system. Winter

USENIX Technical Conference (San Diego, CA, 25–29 January 1993), pages

205–217, January 1993. 9

[56] Panasas, Inc. Panasas ActiveScale Storage Cluster, October 2006.

http://www.panasas.com/products overview.html. 1, 8

[57] Parascale, Inc. ParaScale Cloud Storage Software – Build your own storage cloud,

June 2009. http://www.parascale.com/. 1, 8

[58] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz. NFS

version 3: design and implementation. Summer USENIX Technical Conference

(Boston, MA, 06–10 June 1994), pages 1–16. USENIX Association, 1994. 9

[59] F. J. Pollack, K. C. Kahn, and R. M. Wilkinson. The iMAX–432 object filing

system. ACM Symposium on Operating System Principles (Asilomar, Ca). Published

as Operating Systems Review, 15(5):137–147, December 1981. 8, 9

[60] K. W. Preslan, S. R. Soltis, C. J. Sabol, M. T. O’Keefe, G. Houlder, and J. Coomes.

Device locks: mutual exclusion for storage area networks. IEEE Symposium on

Mass Storage Systems (San Diego, CA, 15–18 March 1999), pages 262–274. IEEE,

1999. 10

[61] S. Quinlan and S. Dorward. Venti: a new approach to archival storage. Conference

on File and Storage Technologies (Monterey, CA, 28–30 January 2002), pages

89–101. USENIX Association, 2002. 8, 10

[62] D. P. Reed. Implementing atomic actions on decentralized data. ACM Transactions

on Computer Systems, 1(1):3–23. ACM Press, February 1983. 9

BIBLIOGRAPHY 154

[63] D. P. Reed and L. Svobodova. SWALLOW: a distributed data storage system for a

local network. International Workshop on Local Networks (Zurich, Switzerland),

August 1980. 9

[64] E. Riedel and J. Satran. OSD Technical Work Group, October 2006.

http://www.snia.org/tech activities/workgroups/osd/. 8, 9

[65] O. Rodeh. B-trees, shadowing, and clones. Trans. Storage, 3(4):1–27. ACM, 2008. 8

[66] O. Rodeh and A. Teperman. zFS - a scalable distributed file system using object

disks. IEEE Symposium on Mass Storage Systems (San Diego, CA, 07–10 April

2003), pages 207–218. IEEE, 2003. 1, 8

[67] S. Z. Roger W. Cox, Pushan Rinnen. Magic Quadrant for Midrange Enterprise Disk

Arrays, June 2009.

http://mediaproducts.gartner.com/reprints/hds/article11/article11.html. 10

[68] J. H. Saltzer. Naming and binding of objects. In , volume 60, pages 99–208.

Springer-Verlag, Berlin, 1978. 9

[69] B. A. Sanders. The information structure of distributed mutual exclusion algorithms.

ACM Transactions on Computer Systems, 5(3):284–299, August 1987. 10

[70] Secretariat, Computer and Business Equipment Manufacturers Association. Draft

proposed American National Standard for information systems – Small Computer

System Interface-2 (SCSI-2), Draft ANSI standard X3T9.2/86-109., 2 February 1991

(revision 10d). 7

[71] M. Spezialetti and P. Kearns. Efficient distributed snapshots. International

Conference on Distributed Computing Systems (Cambridge, MA), pages 382–388.

IEEE Computer Society Press, Catalog number 86CH22293-9, May 1986. 9

[72] M. Stonebraker and G. Kemnitz. The POSTGRES next-generation database

management system. Communications of the ACM, 34(10):78–92. ACM, October

1991. 9

[73] Sun Microsystems, Inc. NFS: network file system protocol specification. RFC–1094.

Network Working Group, March 1989. 9

[74] L. Svobodova. A reliable object-oriented data repository for a distributed computer

system. ACM Symposium on Operating System Principles (Asilomar, Ca). Published

as Operating Systems Review, 15(5):47–58, December 1981. 8

BIBLIOGRAPHY 155

[75] L. Svobodova. File servers for network-based distributed systems. ACM Computing

Surveys, 16(4):353–398, December 1984. 9

[76] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: a scalable distributed file

system. ACM Symposium on Operating System Principles (Saint-Malo, France, 5–8

October 1997). Published as Operating Systems Review, 31(5):224–237. ACM,

1997. 8

[77] B. Walker, G. Popek, R. English, C. Kline, and G. Theil. The LOCUS distributed

operating system. ACM Symposium on Operating System Principles (Bretton

Woods, New Hampshire). Published as Operating Systems Review, 17(5):49–70,

October 1983. 9

[78] F. Wang, S. A. Brandt, E. L. Miller, and D. D. E. Long. OBFS: a file system for

object-based storage devices. NASA Goddard/IEEE Conference on Mass Storage

System and Technologies (Adelphi, MD, 13–16 April 2004). IEEE, 2004. 1, 8

[79] R. O. Weber. SCSI object-based storage device commands-2 (OSD-2). Storage

Networking Industry Association (SNIA), 16 January 2009. Draft r05 of SNIA OSD

Working Group proposal. 10

[80] S. A. Weil, S. A. Brandt, E. L. Miller, and D. D. Long. Ceph: A scalable,

high-performance distributed file system. Symposium on Operating Systems Design

and Implementation (December). USENIX Association, 2006. 1, 8

[81] J. J. Wylie. A read/write protocol family for versatile storage infrastructures. PhD

thesis, published as Technical Report CMU-PDL-05-108. Carnegie Mellon

University, October 2005. 9, 33

[82] A. K. Yeo, A. L. Ananda, and E. K. Koh. A taxonomy of issues in name systems

design and implementation. Operating Systems Review, 27(3):4–18. ACM Press,

1993. 9

Appendix A

Experimental results

This chapter holds the statistical tables summarizing the results of various experiments

from the Evaluation chapter, starting on page 80.

156

APPENDIX A. EXPERIMENTAL RESULTS 157

A.1 Baseline behavior results

A.1.1 Database access experiment results

This table describes data mentioned in Section 6.2.1 starting on page 84.

Table A.1: Ping metadata server back-end database – This data shows

the basic cost of interacting with the metadata server back-end database

through the use of a “ping” function.

Ping of Metadata Server database backend

Data points 1000

Minimum value (ms) 4.737

Maximum value (ms) 8.996

Mean (ms) 5.099

Standard deviation (ms) 0.305

1st Percentile 4.816

5th Percentile 4.866

10th Percentile 4.878

25th Percentile 4.990

50th Percentile 5.011

75th Percentile 5.120

90th Percentile 5.240

95th Percentile 5.420

99th Percentile 6.420

APPENDIX A. EXPERIMENTAL RESULTS 158

A.1.2 Capability experiment results

These tables describe data mentioned in Section 6.2.2 starting on page 85.

Table A.2: Acquiring storage node addressing information – Exper-

imental timings of enumeration of storage node addressing information

with two storage nodes in the system.

Filtering Directory Service for storage node endpoints

Data points 1000

Minimum value (ms) 0.975

Maximum value (ms) 2.130

Mean (ms) 1.352

Standard deviation (ms) 0.430

1st Percentile 0.990

5th Percentile 0.992

10th Percentile 0.995

25th Percentile 0.998

50th Percentile 1.122

75th Percentile 1.956

90th Percentile 1.989

95th Percentile 2.008

99th Percentile 2.057

APPENDIX A. EXPERIMENTAL RESULTS 159

Table A.3: Capability revocation – Results for operation timing of capa-

bility revocation at two storage nodes.

Capability revocation at 2 storage nodes

Data points 1000

Minimum value (ms) 1.045

Maximum value (ms) 2.007

Mean (ms) 1.239

Standard deviation (ms) 0.091

1st Percentile 1.091

5th Percentile 1.118

10th Percentile 1.146

25th Percentile 1.173

50th Percentile 1.224

75th Percentile 1.282

90th Percentile 1.349

95th Percentile 1.394

99th Percentile 1.526

APPENDIX A. EXPERIMENTAL RESULTS 160

A.1.3 Create experiment results

These tables describe data mentioned in Section 6.2.3 starting on page 87.

Table A.4: Create(), sequential, no bulk operation code, no back-

ground instantiation – Statistics for the timing of calls to the Create()

function with no bulk operation code activated and no background instan-

tiations being performed. Create() is called sequentially to the target object

set.

Sequential Create()

Data points 10000

Minimum value (ms) 9.237

Maximum value (ms) 89.732

Mean (ms) 10.020

Standard deviation (ms) 1.165

1st Percentile 9.430

5th Percentile 9.549

10th Percentile 9.609

25th Percentile 9.716

50th Percentile 9.859

75th Percentile 10.034

90th Percentile 10.287

95th Percentile 10.958

99th Percentile 13.164

APPENDIX A. EXPERIMENTAL RESULTS 161

Table A.5: Create(), random, no bulk operation code, no background

instantiation – Statistics for the timing of calls to the Create() function

with no bulk operation code activated and no background instantiations

being performed. Create() is called randomly to the target object set.

Random Create()

Data points 10000

Minimum value (ms) 1.675

Maximum value (ms) 82.697

Mean (ms) 10.313

Standard deviation (ms) 1.478

1st Percentile 9.568

5th Percentile 9.706

10th Percentile 9.776

25th Percentile 9.904

50th Percentile 10.063

75th Percentile 10.278

90th Percentile 10.911

95th Percentile 12.487

99th Percentile 13.804

APPENDIX A. EXPERIMENTAL RESULTS 162

Table A.6: Create(), sequential, bulk operation code, no background

instantiation – Statistics for the timing of calls to the Create() function

with bulk operation code activated and no background instantiations being

performed. Create() is called sequentially to the target object set.

Sequential Create()

Data points 10000

Minimum value (ms) 2.233

Maximum value (ms) 174.643

Mean (ms) 15.610

Standard deviation (ms) 2.984

1st Percentile 14.758

5th Percentile 15.086

10th Percentile 15.184

25th Percentile 15.329

50th Percentile 15.487

75th Percentile 15.671

90th Percentile 15.914

95th Percentile 16.245

99th Percentile 19.091

APPENDIX A. EXPERIMENTAL RESULTS 163

Table A.7: Create(), random, bulk operation code, no background in-

stantiation – Statistics for the timing of calls to the Create() function with

bulk operation code activated and no background instantiations being per-

formed. Create() is called randomly to the target object set.

Random Create()

Data points 10000

Minimum value (ms) 14.829

Maximum value (ms) 46.842

Mean (ms) 16.084

Standard deviation (ms) 1.337

1st Percentile 15.173

5th Percentile 15.338

10th Percentile 15.413

25th Percentile 15.547

50th Percentile 15.714

75th Percentile 15.953

90th Percentile 16.622

95th Percentile 19.768

99th Percentile 21.016

APPENDIX A. EXPERIMENTAL RESULTS 164

A.1.4 Write experiment results

These tables describe data mentioned in Section 6.2.4 starting on page 89.

Table A.8: Lookup(), sequential, no bulk operation code, no back-

ground instantiation – Statistics for the timing of calls to the Lookup()

function with no active bulk operation code and no background instantia-

tions being performed. Lookup() is called (twice for each Write()) as a part

of the higher-level Write() operation to the target object set and sequential

access is done to 64 kB in 16 kB blocks.

Sequential Lookup() of 64 kB with 16 kB blocks

Data points 2000

Minimum value (ms) 7.190

Maximum value (ms) 47.954

Mean (ms) 7.635

Standard deviation (ms) 1.204

1st Percentile 7.255

5th Percentile 7.338

10th Percentile 7.382

25th Percentile 7.460

50th Percentile 7.563

75th Percentile 7.662

90th Percentile 7.766

95th Percentile 7.853

99th Percentile 8.969

APPENDIX A. EXPERIMENTAL RESULTS 165

Table A.9: ApproveWrite(), sequential, no bulk operation code, no

background instantiation – Statistics for the timing of calls to the Ap-

proveWrite() function with no active bulk operation code and no back-

ground instantiations being performed. ApproveWrite() is called as a part

of the higher-level Write() operation to the target object set and sequential

access is done to 64 kB in 16 kB blocks.

Sequential ApproveWrite() of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 10.535

Maximum value (ms) 65.921

Mean (ms) 11.052

Standard deviation (ms) 1.917

1st Percentile 10.597

5th Percentile 10.676

10th Percentile 10.712

25th Percentile 10.797

50th Percentile 10.903

75th Percentile 11.022

90th Percentile 11.204

95th Percentile 11.342

99th Percentile 13.569

APPENDIX A. EXPERIMENTAL RESULTS 166

Table A.10: SSIO Write(), sequential, no bulk operation code, no

background instantiation – Statistics for the timing of calls to the low-

level SSIO Write() function with no active bulk operation code and no

background instantiations being performed. SSIO Write() is called as a

part of the higher-level Write() operation to the target object set and se-

quential access is done to 64 kB in 16 kB blocks. It is the function that

actually sends data to the storage node.

Sequential SSIO Write() of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 5.619

Maximum value (ms) 41.584

Mean (ms) 6.308

Standard deviation (ms) 1.146

1st Percentile 5.761

5th Percentile 5.895

10th Percentile 5.986

25th Percentile 6.143

50th Percentile 6.277

75th Percentile 6.374

90th Percentile 6.473

95th Percentile 6.578

99th Percentile 7.400

APPENDIX A. EXPERIMENTAL RESULTS 167

Table A.11: Finish Write(), sequential, no bulk operation code, no

background instantiation – Statistics for the timing of calls to the Fin-

ish Write() function with no active bulk operation code and no background

instantiations being performed. Finish Write() is called as a part of the

higher-level Write() operation to the target object set and sequential access

is done to 64 kB in 16 kB blocks.

Sequential FinishWrite() of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 14.053

Maximum value (ms) 101.446

Mean (ms) 14.662

Standard deviation (ms) 3.850

1st Percentile 14.125

5th Percentile 14.208

10th Percentile 14.235

25th Percentile 14.304

50th Percentile 14.391

75th Percentile 14.511

90th Percentile 14.691

95th Percentile 14.937

99th Percentile 19.096

APPENDIX A. EXPERIMENTAL RESULTS 168

Table A.12: Write(), sequential, no bulk operation code, no back-

ground instantiation – Statistics for the timing of calls to the client library

Write() function with no active bulk operation code and no background in-

stantiations being performed. Write() is called to the target object set and

sequential access is done to 64 kB in 16 kB blocks.

Sequential Write() of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 45.577

Maximum value (ms) 235.872

Mean (ms) 47.377

Standard deviation (ms) 7.674

1st Percentile 45.997

5th Percentile 46.245

10th Percentile 46.361

25th Percentile 46.563

50th Percentile 46.792

75th Percentile 47.089

90th Percentile 47.479

95th Percentile 47.878

99th Percentile 55.888

APPENDIX A. EXPERIMENTAL RESULTS 169

Table A.13: Lookup(), sequential, active bulk operation code, no back-

ground instantiation – Statistics for the timing of calls to the Lookup()

function with active bulk operation code and no background instantiations

being performed. Lookup() is called (twice for each Write()) as a part of

the higher-level Write() operation to the target object set and sequential

access is done to 64 kB in 16 kB blocks.

Sequential Lookup() of 64 kB with 16 kB blocks

Data points 2000

Minimum value (ms) 8.629

Maximum value (ms) 48.409

Mean (ms) 9.184

Standard deviation (ms) 1.253

1st Percentile 8.736

5th Percentile 8.835

10th Percentile 8.868

25th Percentile 8.951

50th Percentile 9.045

75th Percentile 9.284

90th Percentile 9.463

95th Percentile 9.535

99th Percentile 10.834

APPENDIX A. EXPERIMENTAL RESULTS 170

Table A.14: ApproveWrite(), sequential, bulk operation code, no

background instantiation – Statistics for the timing of calls to the Ap-

proveWrite() function with active bulk operation code and no background

instantiations being performed. ApproveWrite() is called as a part of the

higher-level Write() operation to the target object set and sequential access

is done to 64 kB in 16 kB blocks.

Sequential ApproveWrite() of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 13.104

Maximum value (ms) 84.657

Mean (ms) 13.652

Standard deviation (ms) 2.541

1st Percentile 13.212

5th Percentile 13.289

10th Percentile 13.336

25th Percentile 13.400

50th Percentile 13.487

75th Percentile 13.594

90th Percentile 13.710

95th Percentile 13.861

99th Percentile 15.731

APPENDIX A. EXPERIMENTAL RESULTS 171

Table A.15: SSIO Write(), sequential, active bulk operation code, no

background instantiation – Statistics for the timing of calls to the low-

level SSIO Write() function with active bulk operation code and no back-

ground instantiations being performed. SSIO Write() is called as a part of

the higher-level Write() operation to the target object set and sequential ac-

cess is done to 64 kB in 16 kB blocks. It is the function that actually sends

data to the storage node.

Sequential SSIO Write() of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 5.440

Maximum value (ms) 16.743

Mean (ms) 6.413

Standard deviation (ms) 0.562

1st Percentile 5.731

5th Percentile 5.945

10th Percentile 6.033

25th Percentile 6.174

50th Percentile 6.304

75th Percentile 6.460

90th Percentile 6.868

95th Percentile 7.534

99th Percentile 7.868

APPENDIX A. EXPERIMENTAL RESULTS 172

Table A.16: Finish Write(), sequential, bulk operation code, no back-

ground instantiation – Statistics for the timing of calls to the Fin-

ish Write() function with active bulk operation code and no background

instantiations being performed. Finish Write() is called as a part of the

higher-level Write() operation to the target object set and sequential access

is done to 64 kB in 16 kB blocks.

Sequential FinishWrite() of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 15.120

Maximum value (ms) 99.237

Mean (ms) 15.802

Standard deviation (ms) 3.772

1st Percentile 15.224

5th Percentile 15.299

10th Percentile 15.342

25th Percentile 15.432

50th Percentile 15.538

75th Percentile 15.661

90th Percentile 15.865

95th Percentile 16.054

99th Percentile 18.707

APPENDIX A. EXPERIMENTAL RESULTS 173

Table A.17: Write(), sequential, bulk operation code, no background

instantiation – Statistics for the timing of calls to the Write() function

with active bulk operation code and no background instantiations being

performed. Write() is called to the target object set and sequential access

is done to 64 kB in 16 kB blocks.

Sequential Write() of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 52.329

Maximum value (ms) 253.959

Mean (ms) 54.317

Standard deviation (ms) 8.274

1st Percentile 52.756

5th Percentile 52.964

10th Percentile 53.117

25th Percentile 53.402

50th Percentile 53.711

75th Percentile 54.067

90th Percentile 54.631

95th Percentile 55.159

99th Percentile 61.710

APPENDIX A. EXPERIMENTAL RESULTS 174

Table A.18: Re-Write(), sequential, no bulk operation code, no back-

ground instantiation – When over-writing data on recently written ob-

jects, these are the statistics for the timing of calls to the Write() function

with no active bulk operation code and no background instantiations being

performed. Write() is called to the target object set and sequential access

is done to 64 kB in 16 kB blocks. The client uses valid cached capabilities

during the operation.

Sequential Re-Write() of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 5.179

Maximum value (ms) 6.890

Mean (ms) 5.817

Standard deviation (ms) 0.211

1st Percentile 5.348

5th Percentile 5.499

10th Percentile 5.560

25th Percentile 5.673

50th Percentile 5.818

75th Percentile 5.945

90th Percentile 6.041

95th Percentile 6.123

99th Percentile 6.558

APPENDIX A. EXPERIMENTAL RESULTS 175

Table A.19: Re-Write(), revoked caps, sequential, no bulk ops, no

background instantiation – When over-writing data on recently written

objects with revoked capabilities, these are the statistics for the timing of

calls to the Write() function with no active bulk operation code and no

background instantiations being performed. Write() is called to the target

object set after metadata and capabilities have been cached, and then capa-

bilities are revoked and finally sequential access is done to 64 kB in 16 kB

blocks.

Post-revoke sequential re-Write() of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 29.525

Maximum value (ms) 140.515

Mean (ms) 31.316

Standard deviation (ms) 6.269

1st Percentile 29.795

5th Percentile 30.082

10th Percentile 30.238

25th Percentile 30.464

50th Percentile 30.698

75th Percentile 31.004

90th Percentile 31.344

95th Percentile 31.965

99th Percentile 37.502

APPENDIX A. EXPERIMENTAL RESULTS 176

Table A.20: Cache-hit re-Lookup(), seq, no bulk ops, no background

instantiation – When over-writing data on recently written objects with

revoked capabilities, these are the statistics for the timing of calls to the

Lookup() function with no active bulk operation code and no background

instantiations being performed. Lookup() is called as a part of the higher-

level Write() operation to the target object set and sequential access is done

to 64 kB in 16 kB blocks. This Lookup() operation finds cached metadata

and capabilities for the over-write, but the capabilities have been revoked

and another Lookup() will need to be performed.

Sequential fast re-Lookup() of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 0.072

Maximum value (ms) 0.732

Mean (ms) 0.094

Standard deviation (ms) 0.027

1st Percentile 0.076

5th Percentile 0.080

10th Percentile 0.080

25th Percentile 0.084

50th Percentile 0.088

75th Percentile 0.093

90th Percentile 0.121

95th Percentile 0.129

99th Percentile 0.169

APPENDIX A. EXPERIMENTAL RESULTS 177

Table A.21: Re-Lookup() to MDS, seq, no bulk ops, no background

instantiation – When over-writing data on recently written objects with

revoked capabilities, these are the statistics for the timing of calls to the

Lookup() function with no active bulk operation code and no background

instantiations being performed. Lookup() is called as a part of the higher-

level Write() operation to the target object set and sequential access is done

to 64 kB in 16 kB blocks. This Lookup() operation goes over the network

to the MDS and re-acquires capabilities and metadata for the over-write.

Sequential slow re-Lookup() of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 17.884

Maximum value (ms) 128.777

Mean (ms) 19.385

Standard deviation (ms) 6.243

1st Percentile 18.181

5th Percentile 18.365

10th Percentile 18.445

25th Percentile 18.619

50th Percentile 18.807

75th Percentile 19.008

90th Percentile 19.263

95th Percentile 19.537

99th Percentile 25.505

APPENDIX A. EXPERIMENTAL RESULTS 178

Table A.22: SSIO Write() after revoke, seq, no bulk ops, no back-

ground instantiation – There are two calls to the low-level SSIO Write()

function when re-writing data with revoked capabilities. The first call will

fail with an error informing the caller that the capabilities presented are

invalid. The second call will succeed after the client library logic has re-

acquired capabilities. These are the statistics for the calls to SSIO Write()

with sequential writes to 64 kB of an object in 16 kB blocks.

Sequential SSIO Write() of 64 kB with 16 kB blocks after revoke

Data points 2000

Minimum value (ms) 5.007

Maximum value (ms) 7.841

Mean (ms) 5.793

Standard deviation (ms) 0.273

1st Percentile 5.233

5th Percentile 5.376

10th Percentile 5.463

25th Percentile 5.615

50th Percentile 5.780

75th Percentile 5.978

90th Percentile 6.107

95th Percentile 6.178

99th Percentile 6.476

APPENDIX A. EXPERIMENTAL RESULTS 179

A.1.5 Read experiment results

These tables describe data mentioned in Section 6.2.5 starting on page 98.

Table A.23: Read(), sequential, no bulk operation code, no back-

ground instantiation – Statistics for the timing of calls to the (sslib)Read()

function with no active bulk operation code and no background instantia-

tions being performed. Read() is called with valid capabilities and sequen-

tial access is done to 64 kB in 16 kB blocks.

Initial sequential Sslib Read with caps of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 5.194

Maximum value (ms) 8.393

Mean (ms) 5.901

Standard deviation (ms) 0.335

1st Percentile 5.450

5th Percentile 5.548

10th Percentile 5.609

25th Percentile 5.718

50th Percentile 5.848

75th Percentile 5.996

90th Percentile 6.158

95th Percentile 6.326

99th Percentile 7.514

APPENDIX A. EXPERIMENTAL RESULTS 180

Table A.24: Read(), sequential, no bulk operation code, no back-

ground instantiation, invalid caps – Statistics for the timing of calls to

the Read() function with no active bulk operation code, no background in-

stantiations being performed, and invalid capabilities (that are re-acquired).

Read() is called with invalid capabilities and sequential access is done to

64 kB in 16 kB blocks.

Sequential Sslib Re-Read with caps of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 26.207

Maximum value (ms) 136.606

Mean (ms) 27.873

Standard deviation (ms) 5.918

1st Percentile 26.494

5th Percentile 26.713

10th Percentile 26.831

25th Percentile 27.015

50th Percentile 27.274

75th Percentile 27.616

90th Percentile 28.013

95th Percentile 28.301

99th Percentile 33.612

APPENDIX A. EXPERIMENTAL RESULTS 181

Table A.25: Lookup(), fast, bad caps, sequential, no bulk operation

code, no background instantiation – Statistics for the timing of calls to

the Lookup() function with no active bulk operation code and no back-

ground instantiations being performed. Lookup() is called and finds locally

cached capabilities and metadata to use for reading objects.

Sequential fast re-Lookup() without caps of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 0.069

Maximum value (ms) 0.484

Mean (ms) 0.092

Standard deviation (ms) 0.021

1st Percentile 0.076

5th Percentile 0.076

10th Percentile 0.080

25th Percentile 0.084

50th Percentile 0.087

75th Percentile 0.091

90th Percentile 0.124

95th Percentile 0.129

99th Percentile 0.144

APPENDIX A. EXPERIMENTAL RESULTS 182

Table A.26: SSIO Read(), fast, bad caps, sequential, no bulk operation

code, no background instantiation – Statistics for the timing of calls to

the SSIO Read() function with no active bulk operation code and no back-

ground instantiations being performed. SSIO Read() is called with invalid

capabilities and sequential access is attempted to 64 kB in 16 kB blocks.

These are the stats for the quicker operations during re-read. This read

attempt is quicker because no data is transferred.

Sequential fast Read() without caps of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 2.785

Maximum value (ms) 3.700

Mean (ms) 3.129

Standard deviation (ms) 0.128

1st Percentile 2.888

5th Percentile 2.953

10th Percentile 2.992

25th Percentile 3.039

50th Percentile 3.108

75th Percentile 3.198

90th Percentile 3.311

95th Percentile 3.372

99th Percentile 3.467

APPENDIX A. EXPERIMENTAL RESULTS 183

Table A.27: Lookup(), slow, bad caps, sequential, no bulk operation

code, no background instantiation – Statistics for the timing of calls to

the Lookup() function with no active bulk operation code and no back-

ground instantiations being performed. Lookup() is called and re-acquires

capabilities from the metadata service after a previous operation returned

with an “invalid capability” error.

Sequential slow re-Lookup() without caps of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 18.131

Maximum value (ms) 127.994

Mean (ms) 19.482

Standard deviation (ms) 5.893

1st Percentile 18.273

5th Percentile 18.422

10th Percentile 18.516

25th Percentile 18.686

50th Percentile 18.884

75th Percentile 19.159

90th Percentile 19.587

95th Percentile 19.880

99th Percentile 25.220

APPENDIX A. EXPERIMENTAL RESULTS 184

Table A.28: SSIO Read(), slow, bad caps, sequential, no bulk oper-

ation code, no background instantiation – Statistics for the timing of

calls to the SSIO Read() function with no active bulk operation code and

no background instantiations being performed. SSIO Read() is called with

re-acquired capabilities and sequential access is done to 64 kB in 16 kB

blocks. These are the stats for the slower operations during re-read. This

read attempt takes longer because data is actually transferred.

Sequential slow Read() without caps of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 4.392

Maximum value (ms) 5.305

Mean (ms) 4.941

Standard deviation (ms) 0.141

1st Percentile 4.551

5th Percentile 4.691

10th Percentile 4.751

25th Percentile 4.862

50th Percentile 4.950

75th Percentile 5.033

90th Percentile 5.114

95th Percentile 5.163

99th Percentile 5.253

APPENDIX A. EXPERIMENTAL RESULTS 185

Table A.29: Read(), sequential, bulk operation code, no background

instantiation, invalid caps – Statistics for the timing of calls to the Read()

function with active bulk operation code, no background instantiations be-

ing performed, and invalid capabilities (that are re-acquired). Read() is

called with invalid capabilities and sequential access is done to 64 kB in

16 kB blocks.

Sequential Re-Read with bulk ops and caps of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 29.819

Maximum value (ms) 150.190

Mean (ms) 32.009

Standard deviation (ms) 6.338

1st Percentile 30.132

5th Percentile 30.415

10th Percentile 30.543

25th Percentile 30.804

50th Percentile 31.252

75th Percentile 31.869

90th Percentile 32.660

95th Percentile 33.240

99th Percentile 41.302

APPENDIX A. EXPERIMENTAL RESULTS 186

Table A.30: Lookup(), slow, bad caps, sequential, with bulk operation

code, no background instantiation – Statistics for the timing of calls to

the Lookup() function with active bulk operation code and no background

instantiations being performed. Lookup() is called and re-acquires capa-

bilities from the metadata service after a previous operation returned with

an “invalid capability” error.

Sequential slow Lookup() without caps, with bulk ops, of 64 kB with 16 kB blocks

Data points 1000

Minimum value (ms) 21.567

Maximum value (ms) 141.371

Mean (ms) 23.548

Standard deviation (ms) 6.316

1st Percentile 21.852

5th Percentile 22.042

10th Percentile 22.160

25th Percentile 22.412

50th Percentile 22.774

75th Percentile 23.354

90th Percentile 24.080

95th Percentile 24.580

99th Percentile 32.811

APPENDIX A. EXPERIMENTAL RESULTS 187

A.2 BulkDelete experiment results

These tables describe data mentioned in Section 6.3 starting on page 102.

Table A.31: BulkDelete of single objects, sequential, no background

instantiation – Statistics for the timing of calls to the BulkDelete function

with bulk operation code active and no background instantiations being

performed.

Sequential BulkDelete of single objects

Data points 1000

Minimum value (ms) 6.889

Maximum value (ms) 21.419

Mean (ms) 7.946

Standard deviation (ms) 1.277

1st Percentile 7.006

5th Percentile 7.085

10th Percentile 7.180

25th Percentile 7.360

50th Percentile 7.738

75th Percentile 8.134

90th Percentile 8.430

95th Percentile 8.719

99th Percentile 15.338

APPENDIX A. EXPERIMENTAL RESULTS 188

Table A.32: Create after BulkDelete of single objects, sequential, no

background instantiation – Statistics for the timing of calls to the Create

command on objects recently deleted with bulk operation code active and

no background instantiations being performed.

Sequential Create after BulkDelete of single objects

Data points 1000

Minimum value (ms) 15.227

Maximum value (ms) 46.111

Mean (ms) 18.234

Standard deviation (ms) 3.218

1st Percentile 15.444

5th Percentile 15.693

10th Percentile 15.912

25th Percentile 16.644

50th Percentile 17.950

75th Percentile 19.268

90th Percentile 19.947

95th Percentile 20.178

99th Percentile 44.496

APPENDIX A. EXPERIMENTAL RESULTS 189

A.3 BulkClone experiment results

These tables describe data mentioned in Section 6.4 starting on page 106.

Table A.33: Repeated BulkClone of 1000 objects, prolific – Statistics

for calling BulkClone of 1000 objects 2000 times. Cloning was done in a

prolific clones manner.

Prolific BulkClone of 1000 objects

Data points 2000

Minimum value (ms) 27.936

Maximum value (ms) 412.371

Mean (ms) 251.640

Standard deviation (ms) 42.028

1st Percentile 34.917

5th Percentile 247.883

10th Percentile 250.672

25th Percentile 253.924

50th Percentile 258.199

75th Percentile 263.401

90th Percentile 266.540

95th Percentile 268.926

99th Percentile 300.088

APPENDIX A. EXPERIMENTAL RESULTS 190

Table A.34: Repeated BulkClone of 1000 objects, chain-of-clones –

Statistics for calling BulkClone of 1000 objects 25 times. Cloning was

done in a chain-of-clones manner.

Chain-of-clones BulkClone of 1000 objects

Data points 25

Minimum value (ms) 309.041

Maximum value (ms) 3414.768

Mean (ms) 1778.515

Standard deviation (ms) 970.079

1st Percentile 0.000

5th Percentile 329.781

10th Percentile 452.211

25th Percentile 1001.541

50th Percentile 1723.062

75th Percentile 2564.575

90th Percentile 3138.611

95th Percentile 3279.318

99th Percentile 3414.768

APPENDIX A. EXPERIMENTAL RESULTS 191

Table A.35: Read of BulkClone source objects – Statistics for the timing

of Read of the source objects after a BulkClone.

Read of BulkClone source objects

Data points 1000

Minimum value (ms) 44.305

Maximum value (ms) 124.206

Mean (ms) 74.331

Standard deviation (ms) 15.652

1st Percentile 45.028

5th Percentile 58.919

10th Percentile 60.138

25th Percentile 64.727

50th Percentile 71.319

75th Percentile 78.948

90th Percentile 83.907

95th Percentile 120.155

99th Percentile 122.616

APPENDIX A. EXPERIMENTAL RESULTS 192

Table A.36: Read of BulkClone destination objects – Statistics for the

timing of Read of the destination objects after a BulkClone.

Read of BulkClone destination objects

Data points 1000

Minimum value (ms) 29.387

Maximum value (ms) 467.728

Mean (ms) 72.956

Standard deviation (ms) 20.762

1st Percentile 42.799

5th Percentile 63.467

10th Percentile 64.471

25th Percentile 67.224

50th Percentile 71.886

75th Percentile 77.353

90th Percentile 81.033

95th Percentile 82.305

99th Percentile 89.686

APPENDIX A. EXPERIMENTAL RESULTS 193

A.4 Background instantiation experiment results

These tables describe data mentioned in Section 6.5 starting on page 109.

Table A.37: Create after BulkDelete and completed background in-

stantiation – Statistical summary of Create operations executed after a

BulkDelete has been completely instantiated by background instantiation.

Create after BulkDelete and completed background instantiation

Data points 1000

Minimum value (ms) 15.200

Maximum value (ms) 22.626

Mean (ms) 16.012

Standard deviation (ms) 0.725

1st Percentile 15.374

5th Percentile 15.501

10th Percentile 15.573

25th Percentile 15.701

50th Percentile 15.874

75th Percentile 16.045

90th Percentile 16.265

95th Percentile 16.851

99th Percentile 19.344

APPENDIX A. EXPERIMENTAL RESULTS 194

Table A.38: Read after BulkClone and completed background instan-

tiation – Statistical summary of Read operations executed after a Bulk-

Clone has been completely instantiated by background instantiation. The

read is of 64 kB in 16 kB blocks.

Read after BulkClone and completed background instantiation

Data points 1000

Minimum value (ms) 11.080

Maximum value (ms) 85.953

Mean (ms) 36.390

Standard deviation (ms) 6.819

1st Percentile 12.496

5th Percentile 18.574

10th Percentile 35.682

25th Percentile 36.482

50th Percentile 37.414

75th Percentile 38.393

90th Percentile 39.442

95th Percentile 41.052

99th Percentile 53.050

APPENDIX A. EXPERIMENTAL RESULTS 195

Table A.39: Create after BulkDelete 1:1 with Sleep – Statistical sum-

mary of Create operations after BulkDelete randomly performed in a one-

to-one ratio with Sleep operations of 18 ms.

Create after BulkDelete, 1 Create per 1 Sleep

Data points 955

Minimum value (ms) 5.712

Maximum value (ms) 774.735

Mean (ms) 33.516

Standard deviation (ms) 47.941

1st Percentile 5.906

5th Percentile 7.904

10th Percentile 17.223

25th Percentile 18.060

50th Percentile 18.837

75th Percentile 29.937

90th Percentile 62.008

95th Percentile 87.598

99th Percentile 270.094

APPENDIX A. EXPERIMENTAL RESULTS 196

Table A.40: Create after BulkDelete 1:3 with Sleep – Statistical sum-

mary of Create operations after BulkDelete randomly performed in a one-

to-three ratio with Sleep operations of 18 ms.

Create after BulkDelete, 1 Create per 3 Sleep

Data points 971

Minimum value (ms) 4.246

Maximum value (ms) 323.903

Mean (ms) 23.771

Standard deviation (ms) 28.760

1st Percentile 6.048

5th Percentile 13.421

10th Percentile 15.325

25th Percentile 15.742

50th Percentile 16.042

75th Percentile 17.160

90th Percentile 39.195

95th Percentile 68.159

99th Percentile 162.186

APPENDIX A. EXPERIMENTAL RESULTS 197

Table A.41: Create after BulkDelete 1:7 with Sleep – Statistical sum-

mary of Create operations after BulkDelete randomly performed in a one-

to-seven ratio with Sleep operations of 18 ms.

Create after BulkDelete, 1 Create per 7 Sleep

Data points 953

Minimum value (ms) 5.700

Maximum value (ms) 197.064

Mean (ms) 18.737

Standard deviation (ms) 13.733

1st Percentile 7.622

5th Percentile 15.309

10th Percentile 15.563

25th Percentile 15.845

50th Percentile 16.168

75th Percentile 16.596

90th Percentile 19.127

95th Percentile 30.665

99th Percentile 89.657

APPENDIX A. EXPERIMENTAL RESULTS 198

Table A.42: Read after BulkClone 1:1 with Sleep – Statistical summary

of Read operations after BulkClone randomly performed in a one-to-one

ratio with Sleep operations of 32 ms. The read is of 64 kB in 16 kB blocks.

Read after BulkClone, 1 Read per 1 Sleep

Data points 999

Minimum value (ms) 4.961

Maximum value (ms) 274.599

Mean (ms) 56.076

Standard deviation (ms) 34.423

1st Percentile 21.978

5th Percentile 37.057

10th Percentile 37.435

25th Percentile 38.197

50th Percentile 39.175

75th Percentile 57.400

90th Percentile 111.969

95th Percentile 131.383

99th Percentile 179.563

APPENDIX A. EXPERIMENTAL RESULTS 199

Table A.43: Read after BulkClone 1:3 with Sleep – Statistical summary

of Read operations after BulkClone randomly performed in a one-to-three

ratio with Sleep operations of 32 ms. The read is of 64 kB in 16 kB blocks.

Read after BulkClone, 1 Read per 3 Sleep

Data points 985

Minimum value (ms) 21.596

Maximum value (ms) 214.281

Mean (ms) 49.871

Standard deviation (ms) 27.042

1st Percentile 35.496

5th Percentile 36.985

10th Percentile 37.386

25th Percentile 38.039

50th Percentile 39.101

75th Percentile 40.382

90th Percentile 90.656

95th Percentile 115.628

99th Percentile 153.855

APPENDIX A. EXPERIMENTAL RESULTS 200

Table A.44: Read after BulkClone 1:7 with Sleep – Statistical summary

of Read operations after BulkClone randomly performed in a one-to-seven

ratio with Sleep operations of 32 ms. The read is of 64 kB in 16 kB blocks.

Read after BulkClone, 1 Read per 7 Sleep

Data points 956

Minimum value (ms) 18.093

Maximum value (ms) 204.853

Mean (ms) 43.714

Standard deviation (ms) 18.583

1st Percentile 35.941

5th Percentile 36.659

10th Percentile 37.180

25th Percentile 38.024

50th Percentile 38.851

75th Percentile 39.813

90th Percentile 43.296

95th Percentile 83.861

99th Percentile 132.867

APPENDIX A. EXPERIMENTAL RESULTS 201

Table A.45: Random Read after BulkClone with Random background

instantiation – Statistics for the timing of random Read of the source ob-

jects after a BulkClone while random bulk operations are being instantiated

in the background.

Data points 2000

Minimum value (ms) 4.945

Maximum value (ms) 140.341

Mean (ms) 25.603

Standard deviation (ms) 28.109

1st Percentile 5.101

5th Percentile 5.256

10th Percentile 5.353

25th Percentile 5.465

50th Percentile 5.659

75th Percentile 38.830

90th Percentile 65.777

95th Percentile 86.577

99th Percentile 116.845

APPENDIX A. EXPERIMENTAL RESULTS 202

Table A.46: Sequential Read after BulkClone with Random back-

ground instantiation – Statistics for the timing of sequential Read of the

source objects after a BulkClone while random bulk operations are being

instantiated in the background.

Data points 1000

Minimum value (ms) 16.827

Maximum value (ms) 147.663

Mean (ms) 49.968

Standard deviation (ms) 22.834

1st Percentile 18.390

5th Percentile 22.226

10th Percentile 36.923

25th Percentile 38.455

50th Percentile 39.494

75th Percentile 59.124

90th Percentile 85.985

95th Percentile 103.306

99th Percentile 122.014

APPENDIX A. EXPERIMENTAL RESULTS 203

Table A.47: Random Create after BulkDelete with Random back-

ground instantiation – Statistics for the timing of random Create of ob-

jects after a BulkDelete while random bulk operations are being instanti-

ated in the background.

Data points 1000

Minimum value (ms) 7.096

Maximum value (ms) 496.595

Mean (ms) 34.979

Standard deviation (ms) 44.277

1st Percentile 7.146

5th Percentile 7.281

10th Percentile 7.390

25th Percentile 7.732

50th Percentile 8.395

75th Percentile 61.645

90th Percentile 95.977

95th Percentile 115.394

99th Percentile 153.367

APPENDIX A. EXPERIMENTAL RESULTS 204

Table A.48: Sequential Create after BulkDelete with Random back-

ground instantiation – Statistics for the timing of sequential Create of

objects after a BulkDelete while random bulk operations are being instan-

tiated in the background.

Data points 1000

Minimum value (ms) 4.265

Maximum value (ms) 641.768

Mean (ms) 26.051

Standard deviation (ms) 44.690

1st Percentile 5.864

5th Percentile 5.991

10th Percentile 6.069

25th Percentile 8.095

50th Percentile 8.548

75th Percentile 32.992

90th Percentile 60.286

95th Percentile 82.454

99th Percentile 147.391

APPENDIX A. EXPERIMENTAL RESULTS 205

Table A.49: Random Read after BulkClone with FIFO background

instantiation – Statistics for the timing of random Read of the destination

objects after a BulkClone while bulk operations are being instantiated in

the background via FIFO ordering.

Data points 4000

Minimum value (ms) 4.734

Maximum value (ms) 153.142

Mean (ms) 16.333

Standard deviation (ms) 22.678

1st Percentile 5.029

5th Percentile 5.190

10th Percentile 5.277

25th Percentile 5.408

50th Percentile 5.537

75th Percentile 6.429

90th Percentile 39.038

95th Percentile 56.111

99th Percentile 108.182

APPENDIX A. EXPERIMENTAL RESULTS 206

Table A.50: Sequential Read after BulkClone with FIFO background

instantiation – Statistics for the timing of sequential Read of the destina-

tion objects after a BulkClone while bulk operations are being instantiated

in the background via FIFO ordering.

Data points 2000

Minimum value (ms) 4.858

Maximum value (ms) 205.745

Mean (ms) 34.389

Standard deviation (ms) 44.894

1st Percentile 5.066

5th Percentile 5.222

10th Percentile 5.311

25th Percentile 5.440

50th Percentile 6.574

75th Percentile 38.622

90th Percentile 119.703

95th Percentile 150.726

99th Percentile 184.284

APPENDIX A. EXPERIMENTAL RESULTS 207

Table A.51: Random Create after BulkDelete with background instan-

tiation via FIFO processing – Statistics for the timing of random Create

of objects after a BulkDelete while bulk operations are being instantiated

in the background via FIFO processing.

Data points 1000

Minimum value (ms) 5.345

Maximum value (ms) 225.328

Mean (ms) 22.491

Standard deviation (ms) 31.096

1st Percentile 5.592

5th Percentile 6.207

10th Percentile 7.150

25th Percentile 7.416

50th Percentile 7.917

75th Percentile 8.435

90th Percentile 74.788

95th Percentile 88.756

99th Percentile 124.476

APPENDIX A. EXPERIMENTAL RESULTS 208

Table A.52: Sequential Create after BulkDelete with background in-

stantiation via FIFO processing – Statistics for the timing of sequential

Create of objects after a BulkDelete while bulk operations are being in-

stantiated in the background via FIFO processing.

Data points 1000

Minimum value (ms) 4.190

Maximum value (ms) 1111.061

Mean (ms) 123.614

Standard deviation (ms) 234.727

1st Percentile 4.293

5th Percentile 4.361

10th Percentile 5.708

25th Percentile 7.619

50th Percentile 8.038

75th Percentile 8.514

90th Percentile 540.930

95th Percentile 649.026

99th Percentile 857.375

APPENDIX A. EXPERIMENTAL RESULTS 209

Table A.53: Random Read after BulkClone with LIFO background

instantiation – Statistics for the timing of random Read of the destination

objects after a BulkClone while bulk operations are being instantiated in

the background via LIFO processing.

Data points 4000

Minimum value (ms) 4.794

Maximum value (ms) 124.237

Mean (ms) 16.408

Standard deviation (ms) 22.404

1st Percentile 5.068

5th Percentile 5.192

10th Percentile 5.273

25th Percentile 5.396

50th Percentile 5.532

75th Percentile 6.484

90th Percentile 40.001

95th Percentile 56.054

99th Percentile 104.829

APPENDIX A. EXPERIMENTAL RESULTS 210

Table A.54: Sequential Read after BulkClone with LIFO background

instantiation – Statistics for the timing of sequential Read of the destina-

tion objects after a BulkClone while bulk operations are being instantiated

in the background via LIFO processing.

Data points 2000

Minimum value (ms) 4.757

Maximum value (ms) 255.401

Mean (ms) 36.646

Standard deviation (ms) 51.484

1st Percentile 5.065

5th Percentile 5.224

10th Percentile 5.311

25th Percentile 5.451

50th Percentile 6.231

75th Percentile 41.744

90th Percentile 52.677

95th Percentile 181.387

99th Percentile 226.983

APPENDIX A. EXPERIMENTAL RESULTS 211

Table A.55: Random Create after BulkDelete with background instan-

tiation via LIFO processing – Statistics for the timing of random Create

of objects after a BulkDelete while bulk operations are being instantiated

in the background via LIFO processing.

Data points 1000

Minimum value (ms) 5.582

Maximum value (ms) 181.531

Mean (ms) 20.865

Standard deviation (ms) 26.851

1st Percentile 5.715

5th Percentile 6.005

10th Percentile 6.430

25th Percentile 7.607

50th Percentile 8.186

75th Percentile 8.809

90th Percentile 66.626

95th Percentile 76.761

99th Percentile 102.103

APPENDIX A. EXPERIMENTAL RESULTS 212

Table A.56: Sequential Create after BulkDelete with background in-

stantiation via LIFO processing – Statistics for the timing of sequential

Create of objects after a BulkDelete while bulk operations are being in-

stantiated in the background via LIFO processing.

Data points 1000

Minimum value (ms) 4.460

Maximum value (ms) 1908.945

Mean (ms) 178.780

Standard deviation (ms) 385.890

1st Percentile 4.655

5th Percentile 4.706

10th Percentile 4.761

25th Percentile 7.382

50th Percentile 8.878

75th Percentile 9.344

90th Percentile 881.167

95th Percentile 1120.506

99th Percentile 1467.446

APPENDIX A. EXPERIMENTAL RESULTS 213

Table A.57: Random Read after BulkClone with background instan-

tiation of widest range – Statistics for the timing of random Read of the

destination objects after a BulkClone while bulk operations are being in-

stantiated in the background by processing the widest range.

Data points 4000

Minimum value (ms) 4.620

Maximum value (ms) 151.933

Mean (ms) 16.643

Standard deviation (ms) 23.735

1st Percentile 5.045

5th Percentile 5.205

10th Percentile 5.288

25th Percentile 5.408

50th Percentile 5.539

75th Percentile 6.177

90th Percentile 38.678

95th Percentile 83.965

99th Percentile 109.100

APPENDIX A. EXPERIMENTAL RESULTS 214

Table A.58: Sequential Read after BulkClone with background instan-

tiation of widest range – Statistics for the timing of sequential Read of the

destination objects after a BulkClone while bulk operations are being in-

stantiated in the background by processing the widest range.

Data points 2000

Minimum value (ms) 4.948

Maximum value (ms) 196.323

Mean (ms) 34.322

Standard deviation (ms) 45.163

1st Percentile 5.102

5th Percentile 5.244

10th Percentile 5.341

25th Percentile 5.449

50th Percentile 6.679

75th Percentile 38.484

90th Percentile 119.235

95th Percentile 151.997

99th Percentile 185.686

APPENDIX A. EXPERIMENTAL RESULTS 215

Table A.59: Random Create after BulkDelete with background instan-

tiation via widest range processing – Statistics for the timing of random

Create of objects after a BulkDelete while bulk operations are being in-

stantiated in the background via widest range processing.

Data points 1000

Minimum value (ms) 5.379

Maximum value (ms) 289.039

Mean (ms) 25.922

Standard deviation (ms) 38.819

1st Percentile 5.536

5th Percentile 5.937

10th Percentile 6.227

25th Percentile 7.509

50th Percentile 8.039

75th Percentile 8.597

90th Percentile 87.893

95th Percentile 107.305

99th Percentile 145.506

APPENDIX A. EXPERIMENTAL RESULTS 216

Table A.60: Sequential Create after BulkDelete with background in-

stantiation via widest range processing – Statistics for the timing of se-

quential Create of objects after a BulkDelete while bulk operations are be-

ing instantiated in the background via widest range processing.

Data points 1000

Minimum value (ms) 4.454

Maximum value (ms) 1506.501

Mean (ms) 177.551

Standard deviation (ms) 336.435

1st Percentile 4.532

5th Percentile 4.650

10th Percentile 4.755

25th Percentile 6.501

50th Percentile 9.309

75th Percentile 9.996

90th Percentile 747.383

95th Percentile 952.015

99th Percentile 1218.787

APPENDIX A. EXPERIMENTAL RESULTS 217

Table A.61: Random Read after BulkClone with thinnest range back-

ground instantiation – Statistics for the timing of random Read of the

destination objects after a BulkClone while bulk operations are being in-

stantiated in the background by processing the thinnest range.

Data points 4000

Minimum value (ms) 4.574

Maximum value (ms) 141.372

Mean (ms) 16.401

Standard deviation (ms) 22.455

1st Percentile 5.059

5th Percentile 5.212

10th Percentile 5.290

25th Percentile 5.415

50th Percentile 5.547

75th Percentile 6.632

90th Percentile 39.233

95th Percentile 68.891

99th Percentile 101.813

APPENDIX A. EXPERIMENTAL RESULTS 218

Table A.62: Sequential Read after BulkClone with thinnest range

background instantiation – Statistics for the timing of sequential Read

of the destination objects after a BulkClone while bulk operations are be-

ing instantiated in the background by processing the thinnest range.

Data points 2000

Minimum value (ms) 4.792

Maximum value (ms) 211.549

Mean (ms) 34.431

Standard deviation (ms) 44.507

1st Percentile 5.048

5th Percentile 5.220

10th Percentile 5.302

25th Percentile 5.442

50th Percentile 6.947

75th Percentile 38.739

90th Percentile 117.097

95th Percentile 150.453

99th Percentile 182.570

APPENDIX A. EXPERIMENTAL RESULTS 219

Table A.63: Random Create after BulkDelete with background instan-

tiation via thinnest range processing – Statistics for the timing of random

Create of objects after a BulkDelete while bulk operations are being instan-

tiated in the background via thinnest range processing.

Data points 1000

Minimum value (ms) 5.412

Maximum value (ms) 143.182

Mean (ms) 19.109

Standard deviation (ms) 23.778

1st Percentile 5.565

5th Percentile 5.897

10th Percentile 6.199

25th Percentile 7.465

50th Percentile 8.011

75th Percentile 8.609

90th Percentile 62.230

95th Percentile 72.959

99th Percentile 89.146

APPENDIX A. EXPERIMENTAL RESULTS 220

Table A.64: Sequential Create after BulkDelete with background in-

stantiation via thinnest range processing – Statistics for the timing of

sequential Create of objects after a BulkDelete while bulk operations are

being instantiated in the background via thinnest range processing.

Data points 1000

Minimum value (ms) 4.494

Maximum value (ms) 1567.636

Mean (ms) 178.192

Standard deviation (ms) 333.035

1st Percentile 4.533

5th Percentile 4.634

10th Percentile 6.100

25th Percentile 8.359

50th Percentile 9.265

75th Percentile 9.970

90th Percentile 780.187

95th Percentile 901.647

99th Percentile 1171.904

APPENDIX A. EXPERIMENTAL RESULTS 221

A.5 NFS server baseline results

These tables describe data mentioned in Section 6.6.1 starting on page 135.

These tables constitute the raw data for the NFS server baseline experiments summary

results reported in Table 6.5 on page 136. The experiment consisted of creating a number

of files, cloning them, and then deleting them. A total of four experiments are run, no

cloning, cloning via copying files, cloning in a prolific clone manner, and cloning in a

chain-of-clones manner.

APPENDIX A. EXPERIMENTAL RESULTS 222

Table A.65: NFS File Remove – This table shows the NFS file remove

benchmark in a single directory. The specified number of just-created and

empty files are removed with the rm command on a newly started NFS

server instance for each experiment run.

NFS file remove via rm, times in H:M:s.ms

Run File set size

100 1000 10000

1 5.267 57.488 10:12.546

2 4.635 57.390 10:10.695

3 6.316 57.460 10:08.381

4 6.399 57.383 10:08.453

5 4.643 50.590 10:09.152

6 4.519 57.345 10:07.810

7 4.985 57.567 10:07.736

8 3.014 57.131 10:09.138

9 6.540 57.408 10:12.602

10 4.636 57.357 10:09.284

11 5.376 57.548 10:04.189

12 6.425 57.486 10:09.115

13 6.423 57.509 10:08.503

14 4.512 51.834 10:08.723

15 6.417 57.433 10:08.376

16 6.437 57.444 10:05.905

17 4.955 57.473 10:12.404

18 4.658 57.424 10:10.081

19 4.601 57.453 10:10.653

20 6.522 57.483 10:02.818

Total time 1:47.290 18:56.217 3:22:56.573

Average time 5.364 56.810 10:08.828

Single op time 0.053 0.056 0.060

APPENDIX A. EXPERIMENTAL RESULTS 223

Table A.66: NFS File clone via copy – This table shows the timing of

clone creation via copying of files from a single directory to another.

NFS file Clone via copy with cp, times in H:M:s.ms

Run File set size

100 1000 10000

1 14.459 1:40.725 22:03.407

2 7.159 2:30.278 23:22.949

3 7.156 1:36.427 24:18.250

4 14.549 1:46.592 23:12.357

5 7.175 2:16.344 22:17.244

6 4.402 1:34.835 23:46.964

7 14.563 1:27.480 23:19.519

8 14.463 2:30.581 22:08.980

9 14.488 1:44.167 21:30.190

10 14.550 1:24.037 24:40.933

11 7.119 1:26.997 23:18.059

12 14.427 2:12.145 22:49.132

13 14.555 1:20.834 22:02.024

14 14.446 1:39.865 21:56.554

15 14.413 1:37.295 22:06.873

16 7.114 1:37.060 21:35.044

17 14.587 2:06.247 20:08.015

18 7.143 1:26.306 22:22.279

19 14.522 1:44.376 23:52.604

20 14.498 1:37.239 22:54.412

Total time 3:55.798 35:19.839 7:33:45.798

Average time 11.789 1:45.991 22:41.289

Single op time 0.117 0.105 0.136

APPENDIX A. EXPERIMENTAL RESULTS 224

Table A.67: NFS File Remove after clone via copy – This table shows the

NFS file remove benchmark in a single directory. The specified number of

just-created and empty files are removed with the rm command on a newly

started NFS server instance for each experiment run. Before this stage, the

file system is cloned via the cp command. The data is comparable to that

shown in Table A.65 on page 222.

NFS file remove via rm after Clone by cp, times in H:M:s.ms

Run File set size

100 1000 10000

1 6.452 58.849 10:06.449

2 4.560 59.110 10:11.030

3 5.291 58.365 10:13.007

4 6.461 58.978 10:08.706

5 5.049 58.643 10:08.715

6 4.637 58.315 10:06.707

7 6.440 58.531 9:43.370

8 6.488 58.906 10:08.193

9 6.449 58.715 10:09.362

10 6.452 1:00.892 10:07.490

11 4.370 58.562 10:04.996

12 6.453 57.739 10:06.777

13 6.426 58.528 10:06.550

14 6.478 58.828 10:06.187

15 6.463 58.002 10:04.541

16 4.390 58.212 10:06.669

17 6.441 57.961 10:09.219

18 4.952 58.821 10:08.488

19 6.425 58.642 10:10.568

20 6.537 58.252 10:03.699

Total time 1:57.223 19:32.860 3:22:10.734

Average time 5.861 58.643 10:06.536

Single op time 0.058 0.058 0.060

APPENDIX A. EXPERIMENTAL RESULTS 225

Table A.68: NFS prolific BulkClone – This table shows experimental

NFS prolific BulkClone times.

NFS server prolific BulkClone between Create and Delete, times in H:M:s.ms

Run File set size

100 1000 10000

1 0.449 1.486 2.766

2 0.457 1.064 2.923

3 0.447 1.546 3.428

4 0.948 0.425 2.942

5 0.990 1.549 2.820

6 0.449 1.589 2.917

7 0.955 1.556 2.719

8 0.951 1.253 3.403

9 0.451 1.557 3.013

10 0.953 1.550 3.082

11 0.955 1.563 3.353

12 0.449 1.076 2.760

13 0.451 1.249 3.437

14 0.955 1.561 2.691

15 0.449 1.539 3.263

16 0.956 1.574 2.800

Total time 11.273 22.145 48.325

Average time 0.704 1.384 3.020

APPENDIX A. EXPERIMENTAL RESULTS 226

Table A.69: NFS File Remove after prolific BulkClone – This table

shows the NFS file remove benchmark in a single directory. The specified

number of just-created and empty files are removed with the rm command

on a newly started NFS server instance for each experiment run. Before

this stage, the file system is cloned. The data is comparable to that shown

in Table A.65 on page 222.

NFS file remove via rm after prolific BulkClone, times in H:M:s.ms

Run File set size

100 1000 10000

1 7.787 1:50.010 43:08.985

2 15.233 1:52.349 44:02.127

3 7.793 1:59.779 43:59.248

4 15.542 1:50.384 44:17.423

5 15.712 1:52.004 43:21.120

6 7.800 1:52.025 43:11.894

7 7.661 1:52.849 42:45.765

8 15.517 1:51.981 43:46.032

9 7.880 1:49.508 43:27.969

10 15.584 1:54.400 43:22.590

11 15.506 1:49.931 44:27.330

12 7.800 1:50.134 43:29.480

13 7.785 1:52.057 43:14.073

14 15.616 1:51.664 43:46.113

15 7.798 1:52.903 44:14.815

16 7.354 1:50.026 43:36.655

Total time 2:58.373 29:52.010 11:38:11.627

Average time 11.148 1:52.000 43:38.226

Single op time 0.111 0.112 0.261

APPENDIX A. EXPERIMENTAL RESULTS 227

Table A.70: NFS chain-of-clones BulkClone – This table shows the ex-

perimental NFS chain-of-clones BulkClone times.

NFS server prolific BulkClone between Create and Delete, times in H:M:s.ms

Run File set size

100 1000 10000

1 1.022 1.867 15.581

2 0.994 1.063 16.774

3 0.989 1.747 17.080

4 0.464 1.325 17.316

5 0.994 1.279 16.630

6 0.991 1.426 16.807

7 0.993 2.741 16.596

8 0.991 1.993 16.764

9 0.984 1.062 16.782

10 0.992 1.811 16.962

11 0.992 1.313 16.866

12 1.008 1.419 16.944

13 0.987 1.796 16.966

14 0.921 1.831 16.443

15 0.990 1.436 17.241

16 0.465 1.591 16.439

Total time 14.784 25.706 4:28.198

Average time 0.924 1.606 16.762

APPENDIX A. EXPERIMENTAL RESULTS 228

Table A.71: NFS File Remove after chain-of-clones BulkClone – This

table shows the NFS file remove benchmark in a single directory. The

specified number of just-created and empty files are removed with the rm

command on a newly started NFS server instance for each experiment run.

Before this stage, the file system is cloned in a chain-of-clones manner.

The data is comparable to that shown in Table A.65 on page 222.

NFS file remove via rm after prolific BulkClone, times in H:M:s.ms

Run File set size

100 1000 10000

1 15.908 2:35.443 4:59:01.326

2 15.635 2:44.199 4:57:14.419

3 15.515 2:27.073 5:00:53.713

4 7.728 2:34.290 5:00:23.927

5 15.511 2:39.637 4:59:29.850

6 15.498 2:27.902 4:59:20.120

7 6.729 2:30.035 4:55:57.209

8 15.498 2:29.133 4:58:25.275

9 15.510 2:36.112 4:59:58.011

10 15.527 2:31.286 4:59:46.801

11 15.528 2:26.736 4:56:54.610

12 15.500 2:24.880 4:59:53.344

13 15.523 2:26.916 5:00:55.247

14 15.493 2:25.490 4:57:48.048

15 15.490 2:46.108 4:59:18.728

16 7.748 2:36.418 5:00:35.902

Total time 3:44.349 40:41.665 3 days 7:45:56.538

Average time 14.021 2:32.604 4:59:07.283

Single op time 0.140 0.152 1.794

APPENDIX A. EXPERIMENTAL RESULTS 229

A.6 PostMark experimental results

These tables constitute the raw data for the PostMark benchmark results reported in Ta-

ble 6.6 on page 139

Table A.72: PostMark with no bulk operations – Runs of the PostMark

benchmark with default settings and no BulkClone operations.

Postmark, plain

Run Total Time (s) Transaction Time (s) Read (kB/s) Write (kB/s)

1 121 53 11.55 37.63

2 125 57 11.18 36.42

3 108 38 12.94 42.16

4 145 59 9.64 31.40

5 180 63 7.76 25.29

6 180 63 7.76 25.29

7 125 59 11.18 36.42

8 180 63 7.76 25.29

9 180 63 7.76 25.29

10 180 62 7.76 25.29

11 170 62 8.22 26.78

12 180 62 7.76 25.29

13 180 62 7.76 25.29

14 180 62 7.76 25.29

15 107 37 13.06 42.55

Mean 156.07 57.67 9.32 30.38

Median 180.00 62.00 7.76 25.29

Standard Deviation 30.21 8.65 2.07 6.73

APPENDIX A. EXPERIMENTAL RESULTS 230

Table A.73: PostMark with Clone via Copy – Runs of the PostMark

benchmark with default settings and a clone of active file data made every

10% through the transaction phase (i.e., at 0%, 10% . . . 90%) through the

use of the cp command.

Postmark, Copy as Clone

Run Total Time (s) Transaction Time (s) Read (kB/s) Write (kB/s)

1 683 620 2.05 6.67

2 783 696 1.78 5.81

3 737 643 1.90 6.18

4 703 605 1.99 6.48

5 631 569 2.21 7.22

6 654 590 2.14 6.96

7 631 566 2.21 7.22

8 889 791 1.57 5.12

9 702 607 1.99 6.49

10 775 653 1.80 5.87

Mean 718.80 634.00 1.96 6.40

Median 702.50 613.50 1.99 6.49

Standard Deviation 80.28 67.89 0.21 0.67

APPENDIX A. EXPERIMENTAL RESULTS 231

Table A.74: PostMark with prolific clones – Runs of the PostMark

benchmark with default settings and a prolific BulkClone made every 10%

through the transaction phase (i.e., at 0%, 10% . . . 90%).

Postmark, prolific clones

Run Total Time (s) Transaction Time (s) Read (kB/s) Write (kB/s)

1 389 191 3.59 11.70

2 273 135 5.12 16.68

3 279 138 5.01 16.32

4 281 138 4.97 16.20

5 274 138 5.10 16.62

6 275 135 5.08 16.56

7 363 165 3.85 12.54

8 390 199 3.58 11.67

9 277 136 5.04 16.44

10 338 140 4.13 13.47

11 386 190 3.62 11.79

12 275 137 5.08 16.56

13 348 146 4.02 13.08

14 285 140 4.90 15.97

15 278 137 5.03 16.38

16 335 132 4.17 13.59

Mean 315.38 149.81 4.52 14.72

Median 283.00 138.00 4.94 16.09

Standard Deviation 47.10 22.89 0.63 2.06

APPENDIX A. EXPERIMENTAL RESULTS 232

Table A.75: PostMark with chains-of-clones – Runs of the PostMark

benchmark with default settings and a chain-of-clones BulkClone made

every 10% through the transaction phase (i.e., at 0%, 10% . . . 90%).

Postmark, chain-of-clones

Run Total Time (s) Transaction Time (s) Read (kB/s) Write (kB/s)

1 265 178 5.27 17.18

2 266 184 5.25 17.12

3 327 182 4.27 13.92

4 272 184 5.14 16.74

5 266 184 5.25 17.12

6 325 183 4.30 14.01

7 258 173 5.42 17.65

8 262 177 5.33 17.38

9 320 175 4.37 14.23

10 336 193 4.16 13.55

11 327 183 4.27 13.92

12 313 173 4.46 14.55

13 321 176 4.35 14.18

14 271 190 5.16 16.80

15 264 178 5.29 17.25

16 264 178 5.29 17.25

17 325 184 4.30 14.01

18 260 177 5.37 17.51

19 331 188 4.22 13.75

20 355 191 3.94 12.82

21 285 180 4.90 15.97

22 267 179 5.23 17.05

23 261 178 5.35 17.44

24 282 183 4.95 16.14

Mean 292.62 181.29 4.83 15.73

Median 277.00 181.00 5.04 16.44

Standard Deviation 31.91 5.45 0.51 1.65

APPENDIX A. EXPERIMENTAL RESULTS 233

Table A.76: PostMark with prolific clones and random background

instantiation – Runs of the PostMark benchmark with default settings

and a prolific BulkClone made every 10% through the transaction phase

(i.e., at 0%, 10% . . . 90%). Random background instantiation was active

during the experiment.

Postmark, prolific clones, random background instantiation

Run Total Time (s) Transaction Time (s) Read (kB/s) Write (kB/s)

1 337 263 4.15 13.51

2 388 256 3.60 11.73

3 315 241 4.44 14.45

4 385 252 3.63 11.83

5 333 250 4.20 13.67

6 318 244 4.39 14.32

7 332 258 4.21 13.71

8 329 258 4.25 13.84

9 375 243 3.73 12.14

10 376 243 3.72 12.11

Mean 348.80 250.80 4.03 13.13

Median 335.00 251.00 4.18 13.59

Standard Deviation 28.73 7.79 0.33 1.06

APPENDIX A. EXPERIMENTAL RESULTS 234

Table A.77: PostMark with prolific clones and LIFO background in-

stantiation – Runs of the PostMark benchmark with default settings and

a prolific BulkClone made every 10% through the transaction phase (i.e.,

at 0%, 10% . . . 90%). LIFO background instantiation was active during the

experiment.

Postmark, prolific clones, LIFO background instantiation

Run Total Time (s) Transaction Time (s) Read (kB/s) Write (kB/s)

1 320 247 4.37 14.23

2 296 222 4.72 15.38

3 372 237 3.76 12.24

4 334 259 4.18 13.63

5 300 229 4.66 15.18

6 376 242 3.72 12.11

7 366 236 3.82 12.44

8 297 220 4.70 15.33

9 313 237 4.46 14.55

10 364 216 3.84 12.51

Mean 333.80 234.50 4.22 13.76

Median 327.00 236.50 4.28 13.93

Standard Deviation 32.89 13.19 0.41 1.35

APPENDIX A. EXPERIMENTAL RESULTS 235

Table A.78: PostMark with prolific clones and thinnest range back-

ground instantiation – Runs of the PostMark benchmark with default

settings and a prolific BulkClone made every 10% through the transaction

phase (i.e., at 0%, 10% . . . 90%). Background instantiation of the thinnest

range was active during the experiment.

Postmark, prolific clones, thinnest range background instantiation

Run Total Time (s) Transaction Time (s) Read (kB/s) Write (kB/s)

1 296 226 4.72 15.38

2 300 226 4.66 15.18

3 328 210 4.26 13.88

4 355 224 3.94 12.82

5 361 228 3.87 12.61

6 300 227 4.66 15.18

7 304 231 4.60 14.98

8 299 227 4.67 15.23

9 349 216 4.00 13.05

10 290 214 4.82 15.70

Mean 318.20 222.90 4.42 14.40

Median 302.00 226.00 4.63 15.08

Standard Deviation 27.39 6.98 0.36 1.19

APPENDIX A. EXPERIMENTAL RESULTS 236

Table A.79: PostMark with chains-of-clones and random background

instantiation – Runs of the PostMark benchmark with default settings

and a chain-of-clones BulkClone made every 10% through the transaction

phase (i.e., at 0%, 10% . . . 90%). Random background instantiation was

active during the experiment.

Postmark, chain-of-clones, random background instantiation

Run Total Time (s) Transaction Time (s) Read (kB/s) Write (kB/s)

1 424 279 3.30 10.74

2 395 261 3.54 11.53

3 347 275 4.03 13.12

4 432 299 3.23 10.54

5 377 302 3.71 12.08

6 426 293 3.28 10.69

7 431 299 3.24 10.56

8 382 308 3.66 11.92

9 420 290 3.33 10.84

10 383 250 3.65 11.89

Mean 401.70 285.60 3.50 11.39

Median 407.50 291.50 3.44 11.18

Standard Deviation 29.03 18.95 0.27 0.86

APPENDIX A. EXPERIMENTAL RESULTS 237

Table A.80: PostMark with chains-of-clones and LIFO background

instantiation – Runs of the PostMark benchmark with default settings

and a chain-of-clones BulkClone made every 10% through the transaction

phase (i.e., at 0%, 10% . . . 90%). LIFO background instantiation was active

during the experiment.

Postmark, chain-of-clones, LIFO background instantiation

Run Total Time (s) Transaction Time (s) Read (kB/s) Write (kB/s)

1 426 294 3.28 10.69

2 401 329 3.48 11.35

3 428 296 3.26 10.64

4 430 298 3.25 10.59

5 379 307 3.69 12.01

6 429 298 3.26 10.61

7 427 294 3.27 10.66

8 394 262 3.55 11.56

9 393 320 3.56 11.58

10 389 313 3.59 11.70

Mean 409.60 301.10 3.42 11.14

Median 413.50 298.00 3.38 11.02

Standard Deviation 20.16 18.22 0.17 0.55

APPENDIX A. EXPERIMENTAL RESULTS 238

Table A.81: PostMark with chains-of-clones and thinnest range back-

ground instantiation – Runs of the PostMark benchmark with default set-

tings and a chain-of-clones BulkClone made every 10% through the trans-

action phase (i.e., at 0%, 10% . . . 90%). Background instantiation of the

thinnest range was active during the experiment.

Postmark, chain-of-clones, thinnest range background instantiation

Run Total Time (s) Transaction Time (s) Read (kB/s) Write (kB/s)

1 379 310 3.69 12.01

2 430 297 3.25 10.59

3 419 289 3.33 10.87

4 352 280 3.97 12.93

5 369 295 3.79 12.34

6 352 281 3.97 12.93

7 359 285 3.89 12.68

8 361 285 3.87 12.61

9 348 277 4.02 13.08

10 432 300 3.23 10.54

Mean 380.10 289.90 3.70 12.06

Median 365.00 287.00 3.83 12.47

Standard Deviation 33.73 10.41 0.31 1.01

	Title
	Abstract
	Acknowledgements
	Introduction
	Distributed, object-based storage
	Storage management and operations upon object sets
	Thesis statement
	Bulk operations for storage management
	Roadmap

	Background and related work
	Distributed, object-based storage
	Broader references
	Cloning, snapshots and storage management
	System components
	Objects
	Capabilities
	Data distribution
	Client
	Storage node
	Metadata server

	Delayed instantiation bulk operations
	Placement of responsibility
	Bulk operations at the storage nodes
	Bulk operations at the client
	Bulk operations at the metadata server

	Grouping objects
	BulkClone
	BulkDelete
	Delayed instantiation
	Bulk operation tracking
	Completion and success criteria
	Mitigating costs

	Implementation
	Client
	Storage node
	Metadata server
	Front-end
	Back-end
	Helper

	Background instantiation
	NFS server
	Protocol
	Create
	Lookup
	Enumerate
	Delete
	Write
	Read
	BulkDelete
	BulkClone

	Data structures and algorithms
	Data structures
	Sequencer
	Object table
	BulkDelete table
	BulkClone table
	Object metadata tables

	Implications of bulk operations
	BulkClone
	BulkDelete

	Core algorithms
	GetMDOID
	InstantiatePassThroughLimits
	InstantiateHole
	Divorce

	Core operations
	Enumerate
	Create
	Lookup

	Correctness
	Initial bulk operation processing
	Bulk operation instantiation

	Evaluation
	Experimental setup
	Data collection and instrumentation
	Workload scripting

	Baseline behavior
	Database access experiment
	Capability experiments
	Create
	Write
	Read

	BulkDelete
	BulkClone
	Comparing chains-of-clones and prolific clones
	Access after BulkClone

	Background instantiation
	Non-competitive background instantiation
	Background instantiation with paced foreground workload
	Random bulk operation background instantiation
	FIFO bulk operation background instantiation
	LIFO bulk operation background instantiation
	Widest span of objects bulk operation background instantiation
	Thinnest span of objects bulk operation background instantiation

	NFS server
	Baseline behavior
	PostMark

	Summary

	Conclusions and future work
	Bibliography
	Experimental results
	Baseline behavior results
	Database access experiment results
	Capability experiment results
	Create experiment results
	Write experiment results
	Read experiment results

	BulkDelete experiment results
	BulkClone experiment results
	Background instantiation experiment results
	NFS server baseline results
	PostMark experimental results

